Skip to main content

Improving Accuracy of Time Series Forecasting by Applying an ARIMA-ANN Hybrid Model

  • Conference paper
  • First Online:
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action (APMS 2022)

Abstract

Accurate demand forecasting is critical for any small and medium-sized manufacturer. Limited structured data sources commonly prevent small and medium-sized manufacturers from improving forecasting accuracy, affecting overall performance. We classified products, then implemented a hybrid forecasting method and compared the outcome with Exponential smoothing, ARIMA, LSTM, and ANN forecasting techniques. Numerical results demonstrate that a selection of forecasting methods is not independent of product categorization. For slow-moving products, careful consideration is required. The hybrid ARIMA-ANN method can outperform some existing techniques and lead to higher prediction accuracy, by capturing both linear and nonlinear variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasimehr, H., Shabani, M., Yousefi, M.: An optimized model using LSTM network for demand forecasting. Comput. Ind. Eng. 143, 106435 (2020)

    Article  Google Scholar 

  2. Abbasimehr, H., Paki, R.: Improving time series forecasting using LSTM and attention models. J. Ambient Intell. Human. Comput. 13(1), 673–691 (2022)

    Article  Google Scholar 

  3. Ahmad, A.S., et al.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energy Rev. 33, 102–109 (2014)

    Article  Google Scholar 

  4. Babu, C.N., Reddy, B.E.: A moving-average filter based hybrid ARIMA-ANN model for forecasting time series data. Appl. Soft Comput. 23, 27–38 (2014)

    Article  Google Scholar 

  5. Boylan, J.E., Syntetos, A.A.: The accuracy of intermittent demand estimates. Int. J. Forecast. 21(2), 303–314 (2005)

    Article  Google Scholar 

  6. Boylan, J.E., Syntetos, A.A.: Spare parts management: a review of forecasting research and extensions. IMA J. Manag. Math. 21(3), 227–237 (2010)

    Article  Google Scholar 

  7. Bocewicz, G., Nielsen, P., Banaszak, Z.A., Dang, V.Q.: Cyclic steady state refinement: multimodal processes perspective. In: Frick, J., Laugen, B.T. (eds.) APMS 2011. IAICT, vol. 384, pp. 18–26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33980-6_3

    Chapter  Google Scholar 

  8. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. John Wiley & Sons, Hoboken (2015)

    MATH  Google Scholar 

  9. Büyükşahin, Ü.Ç., Ertekin, Ş: Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition. Neurocomputing 361, 151–163 (2019)

    Article  Google Scholar 

  10. Chandriah, K.K., Naraganahalli, R.V.: RNN/LSTM with modified Adam optimizer in deep learning approach for automobile spare parts demand forecasting. Multimedia Tools Appl. 80(17), 26145–26159 (2021)

    Article  Google Scholar 

  11. Chaudhuri, K.D., Alkan, B.: A hybrid extreme learning machine model with harris hawks optimisation algorithm: an optimised model for product demand forecasting applications. Appl. Intell., 1–17 (2022)

    Google Scholar 

  12. Dolgui, A., Pashkevich, M.: On the performance of binomial and beta-binomial models of demand forecasting for multiple slow-moving inventory items. Comput. Oper. Res. 35(3), 893–905 (2008)

    Article  Google Scholar 

  13. Efendigil, T., Önüt, S., Kahraman, C.: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis. Expert Syst. Appl. 36(3), 6697–6707 (2009)

    Article  Google Scholar 

  14. Gilbert, K.: An ARIMA supply chain model. Manag. Sci. 51(2), 305–310 (2005)

    Article  Google Scholar 

  15. Ho, S.L., Xie, M.: The use of ARIMA models for reliability forecasting and analysis. Comput. Ind. Eng. 35(1–2), 213–216 (1998)

    Article  Google Scholar 

  16. Kantasa-Ard, A., Nouiri, M., Bekrar, A., Ait el Cadi, A., Sallez, Y.: Machine learning for demand forecasting in the physical internet: a case study of agricultural products in Thailand. Int. J. Prod. Res. 59(24), 7491–7515 (2021)

    Article  Google Scholar 

  17. Khashei, M., Bijari, M.: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 11(2), 2664–2675 (2011)

    Article  Google Scholar 

  18. Kim, M., Lee, J., Lee, C., Jeong, J.: Framework of 2D KDE and LSTM-Based Forecasting for Cost-Effective Inventory Management in Smart Manufacturing. Appl. Sci. 12(5), 2380 (2022)

    Article  Google Scholar 

  19. Kourentzes, N., Trapero, J.R., Barrow, D.K.: Optimising forecasting models for inventory planning. Int. J. Prod. Econ. 225, 107597 (2020)

    Article  Google Scholar 

  20. Lesmana, E., Subartini, B., Jabar, D.A.: Analysis of forecasting and inventory control of raw material supplies in PT INDAC INT’L. In: IOP Conference Series: Materials Science and Engineering, vol. 332, no. 1, p. 012015. IOP Publishing (2018)

    Google Scholar 

  21. Nielsen, P., Michna, Z., Do, N.A.D.: An empirical investigation of lead time distributions. In: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (eds.) APMS 2014. IAICT, vol. 438, pp. 435–442. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44739-0_53

    Chapter  Google Scholar 

  22. Olesen, J., et al.: Joint effect of forecasting and lot-sizing method on cost minimization objective of a manufacturer: a case study. Appl. Comput. Sci. 16(4), 21–36 (2020)

    Google Scholar 

  23. Rawnaque, F.S.: Technological advancements and opportunities in Neuromarketing: a systematic review. Brain Inf. 7(1), 1–19 (2020)

    Article  Google Scholar 

  24. Sajjad, M., et al.: A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 8, 143759–143768 (2020)

    Article  Google Scholar 

  25. Shanmuganathan, S.: Artificial neural network modelling: an introduction. In: Shanmuganathan, S., Samarasinghe, S. (eds.) Artificial Neural Network Modelling. SCI, vol. 628, pp. 1–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28495-8_1

    Chapter  Google Scholar 

  26. Syntetos, A.A., Boylan, J.E., Croston, J.D.: On the categorization of demand patterns. J. Oper. Res. Soc. 56(5), 495–503 (2005)

    Article  Google Scholar 

  27. Thibbotuwawa, A., Nielsen, P., Bocewicz, G., Banaszak, Z.: UAVs fleet mission planning subject to weather fore-cast and energy consumption constraints. In: Conference on Automation, pp. 104–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13273-6_11

  28. Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53(8), 5929–5955 (2020)

    Article  Google Scholar 

  29. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  Google Scholar 

  30. Zhang, R., Song, H., Chen, Q., Wang, Y., Wang, S., Li, Y.: Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China. Plos one 17(1), e0262009 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarkaft Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wahedi, H. et al. (2022). Improving Accuracy of Time Series Forecasting by Applying an ARIMA-ANN Hybrid Model. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 663. Springer, Cham. https://doi.org/10.1007/978-3-031-16407-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16407-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16406-4

  • Online ISBN: 978-3-031-16407-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics