Skip to main content

Using Operational Data to Represent Machine Components Health and Derive Data-Driven Services

  • Conference paper
  • First Online:
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action (APMS 2022)

Abstract

A highly competitive global market and rapid technological changes have induced a transformation in the manufacturing industry. In order to stay competitive, companies are intensifying the collection of life cycle data from their products in order to add customized digital services. The resulting digitally-enabled Product-Service Systems (PSS) can boost differentiation, but concrete business opportunities and their implementation often remain vague. An example is the data-driven assessment of machine components health status. While such information could be used to generate services like predictive maintenance or remanufacturing, the necessary data and algorithms to predict the remaining useful life and ways to convey the value to the customer are often unclear. This paper illustrates the engineering of a predictive maintenance service base on operational machine data. Furthermore, possible PSS offerings and the related business models are analysed. The results are tested in a use case from the manufacturing industry and finally implications for digitally-enabled PSS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Deutschlands Zukunft als Produktionsstandort sichern; Abschlussbericht des Arbeitskreises Industrie 4.0. Forschungsunion; Geschäftsstelle der Plattform Industrie 4.0, Berlin, Frankfurt/Main (2013)

    Google Scholar 

  2. Kaihara, T., et al.: Value creation in production: reconsideration from interdisciplinary approaches. CIRP Ann. 67, 791–813 (2018). https://doi.org/10.1016/j.cirp.2018.05.002

    Article  Google Scholar 

  3. Baines, T., Ziaee Bigdeli, A., Bustinza, O.F., Shi, V.G., Baldwin, J., Ridgway, K.: Servitization: revisiting the state-of-the-art and research priorities. Int. J. Op. Prod. Manage. 37, 256–278 (2017). https://doi.org/10.1108/IJOPM-06-2015-0312

    Article  Google Scholar 

  4. Ritter, F.: Lebensdauer von Bauteilen und Bauelementen - Modellierung und praxisnahe Prognose. Darmstadt

    Google Scholar 

  5. DIN 31051:2019-06, Grundlagen der Instandhaltung. Beuth Verlag GmbH, Berlin

    Google Scholar 

  6. Calabrese, M., et al.: SOPHIA: an event-based IoT and machine learning architecture for predictive maintenance in Industry 4.0. Information 11, 202 (2020). https://doi.org/10.3390/info11040202

  7. Jimenez-Cortadi, A., Irigoien, I., Boto, F., Sierra, B., Rodriguez, G.: Predictive maintenance on the machining process and machine tool. Appl. Sci. 10, 224 (2020). https://doi.org/10.3390/app10010224

    Article  Google Scholar 

  8. Guo, L., Li, N., Jia, F., Lei, Y., Lin, J.: A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 240, 98–109 (2017). https://doi.org/10.1016/j.neucom.2017.02.045

    Article  Google Scholar 

  9. Modoni, G.E., Trombetta, A., Veniero, M., Sacco, M., Mourtzis, D.: An event-driven integrative framework enabling information notification among manufacturing resources. Int. J. Comput. Integr. Manuf. 32, 241–252 (2019). https://doi.org/10.1080/0951192X.2019.1571232

    Article  Google Scholar 

  10. Sakib, N., Wuest, T.: Challenges and opportunities of condition-based predictive maintenance: a review. Procedia CIRP 78, 267–272 (2018). https://doi.org/10.1016/j.procir.2018.08.318

    Article  Google Scholar 

  11. Steinhilper, W., Sauer, B.: Grundlagen der Berechnung und Gestaltung von Maschinenelementen. Springer, Berlin (2008)

    Google Scholar 

  12. Zhang, S.: Instandhaltung und Anlagenkosten. Deutscher Universitätsverlag, Wiesbaden, s.l. (1990)

    Google Scholar 

  13. Schiefer, H., Schiefer, F.: Statistische Versuchsplanung, Design of Experiments (DoE). In: Statistik für Ingenieure. Springer Vieweg, Wiesbaden (2010). https://doi.org/10.1007/978-3-658-20640-6_1

  14. Bender, A., Kaul, T., Sextro, W.: Entwicklung eines Condition Monitoring Systems für Gummi-Metall-Elemente. In: Verlagsschriftenreihe des Heinz Nixdorf Instituts Band 369, Paderborn, pp. 347–358 (2017)

    Google Scholar 

  15. Ray, S.: A quick review of machine learning algorithms. In: Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects. COMITCon 2019: 14th–16th February 2019, pp. 35–39. IEEE, Piscataway (2019). https://doi.org/10.1109/COMITCon.2019.8862451

  16. Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016). https://doi.org/10.1080/21693277.2016.1192517

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the German Federal Ministry of Education and Research (BMBF) through the project “LongLife” (033R246A) and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project “Mittelstand 4.0 – Kompetenzzentrum Bremen” (01MF17004B). The authors wish to acknowledge the funding agency and all project partners for their contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiesner, S., Egbert, L., Zitnikov, A. (2022). Using Operational Data to Represent Machine Components Health and Derive Data-Driven Services. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-031-16411-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16411-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16410-1

  • Online ISBN: 978-3-031-16411-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics