Abstract
A highly competitive global market and rapid technological changes have induced a transformation in the manufacturing industry. In order to stay competitive, companies are intensifying the collection of life cycle data from their products in order to add customized digital services. The resulting digitally-enabled Product-Service Systems (PSS) can boost differentiation, but concrete business opportunities and their implementation often remain vague. An example is the data-driven assessment of machine components health status. While such information could be used to generate services like predictive maintenance or remanufacturing, the necessary data and algorithms to predict the remaining useful life and ways to convey the value to the customer are often unclear. This paper illustrates the engineering of a predictive maintenance service base on operational machine data. Furthermore, possible PSS offerings and the related business models are analysed. The results are tested in a use case from the manufacturing industry and finally implications for digitally-enabled PSS are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Deutschlands Zukunft als Produktionsstandort sichern; Abschlussbericht des Arbeitskreises Industrie 4.0. Forschungsunion; Geschäftsstelle der Plattform Industrie 4.0, Berlin, Frankfurt/Main (2013)
Kaihara, T., et al.: Value creation in production: reconsideration from interdisciplinary approaches. CIRP Ann. 67, 791–813 (2018). https://doi.org/10.1016/j.cirp.2018.05.002
Baines, T., Ziaee Bigdeli, A., Bustinza, O.F., Shi, V.G., Baldwin, J., Ridgway, K.: Servitization: revisiting the state-of-the-art and research priorities. Int. J. Op. Prod. Manage. 37, 256–278 (2017). https://doi.org/10.1108/IJOPM-06-2015-0312
Ritter, F.: Lebensdauer von Bauteilen und Bauelementen - Modellierung und praxisnahe Prognose. Darmstadt
DIN 31051:2019-06, Grundlagen der Instandhaltung. Beuth Verlag GmbH, Berlin
Calabrese, M., et al.: SOPHIA: an event-based IoT and machine learning architecture for predictive maintenance in Industry 4.0. Information 11, 202 (2020). https://doi.org/10.3390/info11040202
Jimenez-Cortadi, A., Irigoien, I., Boto, F., Sierra, B., Rodriguez, G.: Predictive maintenance on the machining process and machine tool. Appl. Sci. 10, 224 (2020). https://doi.org/10.3390/app10010224
Guo, L., Li, N., Jia, F., Lei, Y., Lin, J.: A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 240, 98–109 (2017). https://doi.org/10.1016/j.neucom.2017.02.045
Modoni, G.E., Trombetta, A., Veniero, M., Sacco, M., Mourtzis, D.: An event-driven integrative framework enabling information notification among manufacturing resources. Int. J. Comput. Integr. Manuf. 32, 241–252 (2019). https://doi.org/10.1080/0951192X.2019.1571232
Sakib, N., Wuest, T.: Challenges and opportunities of condition-based predictive maintenance: a review. Procedia CIRP 78, 267–272 (2018). https://doi.org/10.1016/j.procir.2018.08.318
Steinhilper, W., Sauer, B.: Grundlagen der Berechnung und Gestaltung von Maschinenelementen. Springer, Berlin (2008)
Zhang, S.: Instandhaltung und Anlagenkosten. Deutscher Universitätsverlag, Wiesbaden, s.l. (1990)
Schiefer, H., Schiefer, F.: Statistische Versuchsplanung, Design of Experiments (DoE). In: Statistik für Ingenieure. Springer Vieweg, Wiesbaden (2010). https://doi.org/10.1007/978-3-658-20640-6_1
Bender, A., Kaul, T., Sextro, W.: Entwicklung eines Condition Monitoring Systems für Gummi-Metall-Elemente. In: Verlagsschriftenreihe des Heinz Nixdorf Instituts Band 369, Paderborn, pp. 347–358 (2017)
Ray, S.: A quick review of machine learning algorithms. In: Proceedings of the International Conference on Machine Learning, Big Data, Cloud and Parallel Computing: Trends, Prespectives and Prospects. COMITCon 2019: 14th–16th February 2019, pp. 35–39. IEEE, Piscataway (2019). https://doi.org/10.1109/COMITCon.2019.8862451
Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016). https://doi.org/10.1080/21693277.2016.1192517
Acknowledgements
This research has been funded by the German Federal Ministry of Education and Research (BMBF) through the project “LongLife” (033R246A) and the German Federal Ministry for Economic Affairs and Climate Action (BMWK) through the project “Mittelstand 4.0 – Kompetenzzentrum Bremen” (01MF17004B). The authors wish to acknowledge the funding agency and all project partners for their contribution.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Wiesner, S., Egbert, L., Zitnikov, A. (2022). Using Operational Data to Represent Machine Components Health and Derive Data-Driven Services. In: Kim, D.Y., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology, vol 664. Springer, Cham. https://doi.org/10.1007/978-3-031-16411-8_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-16411-8_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16410-1
Online ISBN: 978-3-031-16411-8
eBook Packages: Computer ScienceComputer Science (R0)