Skip to main content

Why Semi-supervised Learning Makes Sense: A Pedagogical Note

  • Chapter
  • First Online:
Decision Making Under Uncertainty and Constraints

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 217))

Abstract

The main idea behind semi-supervised learning is that when we do not have enough human-generated labels, we train a machine learning system based on what we have, and we add the resulting labels (called pseudo-labels) to the training sample. Interesting, this idea works well, but why is somewhat a mystery: we did not add any new information so why is this working? There exist explanations for this empirical phenomenon, but most of these explanations are based on complicated math. In this paper, we provide a simple intuitive explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Leaning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation grants 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kosheleva, O., Kreinovich, V. (2023). Why Semi-supervised Learning Makes Sense: A Pedagogical Note. In: Ceberio, M., Kreinovich, V. (eds) Decision Making Under Uncertainty and Constraints. Studies in Systems, Decision and Control, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-031-16415-6_18

Download citation

Publish with us

Policies and ethics