Abstract
Electrophysiological Source Imaging (ESI) refers to the process of localizing the brain source activation patterns given measured Electroencephalography (EEG) or Magnetoencephalography (MEG) signal from the scalp. Recent studies have focused on designing sophisticated neurophysiologically plausible regularizations or efficient estimation frameworks to solve the ESI problem, with the underlying assumption that brain source activation has some specific structures. Estimation of both source location and its extents is important in clinical applications. However, estimating the high dimensional extended location is challenging due to the highly coherent columns in the leadfield matrix, resulting in a reconstructed spiky spurious sources. In this work, we describe an efficient and accurate framework by exploiting the graph structure defined in the 3D mesh of the brain. Specifically, we decompose the graph signal representation in the source space into low-, medium-, and high-frequency subspaces, and project the source signal into the graph low-frequency subspace. We further introduce a low-rank representation with temporal graph regularization in the projected space to build the ESI framework, which can be efficiently solved. Experiments with simulated data and real world EEG data demonstrated the superiority of the proposed paradigm for estimating brain source extents.
F. Liu and G. Wan—Contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
Ding, L.: Reconstructing cortical current density by exploring sparseness in the transform domain. Phys. Med. Biol. 54(9), 2683–2697 (2009). https://doi.org/10.1088/0031-9155/54/9/006
Ding, L., He, B.: Sparse source imaging in electroencephalography with accurate field modeling. Hum. Brain Mapp. 29(9), 1053–1067 (2008)
Ding, L., et al.: EEG source imaging: correlate source locations and extents with ECoG and surgical resections in epilepsy patients. J. Clin. Neurophysiol. 24(2), 130–136 (2007)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Gramfort, A., Kowalski, M., Hämäläinen, M.: Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Phys. Med. Biol. 57(7), 1937 (2012)
Gramfort, A., et al.: MNE software for processing MEG and EEG data. Neuroimage 86, 446–460 (2014)
Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M.S., Kowalski, M.: Time-frequency mixed-norm estimates: sparse M/EEG imaging with non-stationary source activations. Neuroimage 70, 410–422 (2013)
Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)
Haufe, S., Ewald, A.: A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies. Brain Topogr. 32(4), 625–642 (2016). https://doi.org/10.1007/s10548-016-0498-y
He, B., Sohrabpour, A., Brown, E., Liu, Z.: Electrophysiological source imaging: a noninvasive window to brain dynamics. Annu. Rev. Biomed. Eng. 20, 171–196 (2018)
He, M., Liu, F., Nummenmaa, A., Hämäläinen, M., Dickerson, B.C., Purdon, P.L.: Age-related EEG power reductions cannot be explained by changes of the conductivity distribution in the head due to brain atrophy. Front. Aging Neurosci. 13, 632310 (2021)
Huang, W., Bolton, T.A., Medaglia, J.D., Bassett, D.S., Ribeiro, A., Van De Ville, D.: A graph signal processing perspective on functional brain imaging. Proc. IEEE 106(5), 868–885 (2018)
Huang, Y., Parra, L.C., Haufe, S.: The New York head - a precise standardized volume conductor model for EEG source localization and tES targeting. Neuroimage 140, 150–162 (2016)
Jiao, M., et al.: A graph fourier transform based bidirectional long short-term memory neural network for electrophysiological source imaging. Front. Neurosci. 16, 867466 (2022)
Liu, F., Rosenberger, J., Lou, Y., Hosseini, R., Su, J., Wang, S.: Graph regularized EEG source imaging with in-class consistency and out-class discrimination. IEEE Trans. Big Data 3(4), 378–391(2017)
Liu, F., Wang, L., Lou, Y., Li, R.C., Purdon, P.L.: Probabilistic structure learning for EEG/MEG source imaging with hierarchical graph priors. IEEE Trans. Med. Imaging 40(1), 321–334 (2020)
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
Michel, C.M., Murray, M.M., Lantz, G., Gonzalez, S., Spinelli, L., de Peralta, R.G.: EEG source imaging. Clin. Neurophysiol. 115(10), 2195–2222 (2004)
Ortega, A., Frossard, P., Kovačević, J., Moura, J.M., Vandergheynst, P.: Graph signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)
Ou, W., Hämäläinen, M.S., Golland, P.: A distributed spatio-temporal EEG/MEG inverse solver. Neuroimage 44(3), 932–946 (2009). https://doi.org/10.1016/j.neuroimage.2008.05.063
Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl D), 5–12 (2002)
Phillips, C., Rugg, M.D., Friston, K.J.: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints. Neuroimage 16(3), 678–695 (2002)
Sohrabpour, A., Lu, Y., Worrell, G., He, B.: Imaging brain source extent from EEG/MEG by means of an iteratively reweighted edge sparsity minimization (IRES) strategy. Neuroimage 142, 27–42 (2016)
Sohrabpour, A., He, B.: Exploring the extent of source imaging: recent advances in noninvasive electromagnetic brain imaging. Curr. Opin. Biomed. Eng. 18, 100277 (2021)
Uutela, K., Hämäläinen, M., Somersalo, E.: Visualization of magnetoencephalographic data using minimum current estimates. Neuroimage 10(2), 173–180 (1999)
Zhu, M., Zhang, W., et al.: Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. Neuroimage 86, 280–293 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, F., Wan, G., Semenov, Y.R., Purdon, P.L. (2022). Extended Electrophysiological Source Imaging with Spatial Graph Filters. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-16431-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16430-9
Online ISBN: 978-3-031-16431-6
eBook Packages: Computer ScienceComputer Science (R0)