Skip to main content

Combining Multiple Atlases to Estimate Data-Driven Mappings Between Functional Connectomes Using Optimal Transport

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Connectomics is a popular approach for understanding the brain with neuroimaging data. Yet, a connectome generated from one atlas is different in size, topology, and scale compared to a connectome generated from another atlas. These differences hinder interpreting, generalizing, and combining connectomes and downstream results from different atlases. Recently, it was proposed that a mapping between atlases can be estimated such that connectomes from one atlas (i.e., source atlas) can be reconstructed into a connectome from a different atlas (i.e., target atlas) without re-processing the data. This approach used optimal transport to estimate the mapping between one source atlas and one target atlas. Yet, restricting the optimal transport problem to only a single source atlases ignores additional information when multiple source atlases are available, which is likely. Here, we propose a novel optimal transport based solution to combine information from multiple source atlases to better estimate connectomes for the target atlas. Reconstructed connectomes based on multiple source atlases are more similar to their “gold-standard” counterparts and better at predicting IQ than reconstructed connectomes based on a single source mapping. Importantly, these results hold for a wide-range of different atlases. Overall, our approach promises to increase the generalization of connectome-based results across different atlases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschuler, J., Weed, J., Rigollet, P.: Near-linear time approximation algorithms for optimal transport via sinkhorn iteration. arXiv preprint arXiv:1705.09634 (2017)

  2. Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. NeuroImage 170, 5–30 (2018). https://doi.org/10.1016/j.neuroimage.2017.04.014, https://www.sciencedirect.com/science/article/pii/S1053811917303026, segmenting the Brain

  3. Bertsimas, D., Tsitsiklis, J.: Introduction to linear optimization, Athena scientific (1997). http://athenasc.com/linoptbook.html

  4. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman, Ser. A 5, 147–154 (1946)

    Google Scholar 

  5. Casey, B., et al.: The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018)

    Article  Google Scholar 

  6. Cohen, A.L., et al.: Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41(1), 45–57 (2008)

    Article  Google Scholar 

  7. Craddock, R.C., James, G.A., Holtzheimer, P.E., III., Hu, X.P., Mayberg, H.S.: A whole brain FMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapping 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  8. Dadashkarimi, J., Karbasi, A., Scheinost, D.: Data-driven mapping between functional connectomes using optimal transport. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 293–302. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_28

    Chapter  Google Scholar 

  9. Dantzig, G.B.: Reminiscences about the origins of linear programming. In: Mathematical Programming The State of the Art, pp. 78–86. Springer, Heidelberg (1983). https://doi.org/10.1007/978-3-642-68874-4_4

  10. Fan, L., et al.: The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb. Cortex 26(8), 3508–3526 (2016)

    Article  Google Scholar 

  11. Flamary, R., Courty, N.: Pot python optimal transport library (2017). https://pythonot.github.io/

  12. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  Google Scholar 

  13. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  14. Hitchcock, F.L.: The distribution of a product from several sources to numerous localities. J. Math. Phys. 20(1–4), 224–230 (1941)

    Article  MathSciNet  Google Scholar 

  15. Horien, C., et al.: A hitchhiker’s guide to working with large, open-source neuroimaging datasets. Nat. Hum. Behav. 1–9 (2020)

    Google Scholar 

  16. Joshi, A., et al.: Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics 9(1), 69–84 (2011)

    Article  Google Scholar 

  17. Kantorovich, L.: On the transfer of masses In: Doklady Akademii Nauk, vol. 37, pp. 227–229 (1942). (in russian)

    Google Scholar 

  18. Koopmans, T.C.: Optimum utilization of the transportation system. Econometrica J. Econ. Soc. 17, 136–146 (1949)

    Google Scholar 

  19. Peyré, G., Cuturi, M., et al.: Computational optimal transport: With applications to data science. Found. Trends® Mach. Learn. 11(5–6), 355–607 (2019)

    Google Scholar 

  20. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  Google Scholar 

  21. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vis. 40(2), 99–121 (2000)

    Article  Google Scholar 

  22. Schaefer, A., et al.: Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28(9), 3095–3114 (2018)

    Article  Google Scholar 

  23. Shen, X., et al.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12(3), 506 (2017)

    Article  Google Scholar 

  24. Shen, X., Tokoglu, F., Papademetris, X., Constable, R.T.: Groupwise whole-brain parcellation from resting-state FMRI data for network node identification. Neuroimage 82, 403–415 (2013)

    Article  Google Scholar 

  25. Sudlow, C., et al.: Uk biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12(3), e1001779 (2015)

    Article  Google Scholar 

  26. Tolstoi, A.: Methods of finding the minimal total kilometrage in cargo transportation planning in space. Trans. Press Natl. Commissariat Transp. 1, 23–55 (1930)

    Google Scholar 

  27. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

Download references

Acknowledgements

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; U54 MH091657) and funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University. Amin Karbasi is partially supported by NSF (IIS-1845032), ONR (N00014-19-1-2406), and Tata.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javid Dadashkarimi .

Editor information

Editors and Affiliations

Ethics declarations

Compliance with Ethical Standards

This research study was conducted retrospectively using human subject data made available in open access by the Human Connectome Project. Approval was granted by local IRB. Yale Human Research Protection Program (HIC #2000023326) on May 3, 2018.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 297 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dadashkarimi, J., Karbasi, A., Scheinost, D. (2022). Combining Multiple Atlases to Estimate Data-Driven Mappings Between Functional Connectomes Using Optimal Transport. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics