Skip to main content

Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Cardiac magnetic resonance (CMR) is the gold standard for quantification of cardiac volumes, function, and blood flow. Tailored MR pulse sequences define the contrast mechanisms, acquisition geometry and timing which can be applied during CMR to achieve unique tissue characterisation. It is impractical for each patient to have every possible acquisition option. We target the aortic valve in the three-chamber (3-CH) cine CMR view. Two major types of anomalies are possible in the aortic valve. Stenosis: the narrowing of the valve which prevents an adequate outflow of blood, and insufficiency (regurgitation): the inability to stop the back-flow of blood into the left ventricle. We develop and evaluate a deep learning system to accurately classify aortic valve abnormalities to enable further directed imaging for patients who require it. Inspired by low level image processing tasks, we propose a multi-level network that generates heat maps to locate the aortic valve leaflets’ hinge points and aortic stenosis or regurgitation jets. We trained and evaluated all our models on a dataset of clinical CMR studies obtained from three NHS hospitals (n = 1,017 patients). Our results (mean accuracy = 0.93 and F1 score = 0.91), show that an expert-guided deep learning-based feature extraction and a classification model provide a feasible strategy for prescribing further, directed imaging, thus improving the efficiency and utility of CMR scanning.

K. Vimalesvaran and F. Uslu—contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scikit-learn.org/stable/.

References

  1. Myerson, S.G.: CMR in evaluating valvular heart disease: diagnosis, severity, and outcomes. Cardiovasc. Imaging 14(10), 2020–2032 (2021)

    Google Scholar 

  2. Baumgartner, H.: What influences the outcome of valve replacement in critical aortic stenosis? Heart 91(10), 1254 (2005)

    Article  Google Scholar 

  3. Thubrikar, M.: The Aortic Valve. Routledge, Abingdon (2018)

    Book  Google Scholar 

  4. Howard, J.P., et al.: Automated analysis and detection of abnormalities in transaxial anatomical cardiovascular magnetic resonance images: a proof of concept study with potential to optimize image acquisition. Int. J. Cardiovasc. Imaging 37(3), 1033–1042 (2020). https://doi.org/10.1007/s10554-020-02050-w

    Article  Google Scholar 

  5. Kramer, C.M., Barkhausen, J., Bucciarelli-Ducci, C., Flamm, S.D., Kim, R.J., Nagel, E.: Standardized cardiovascular magnetic resonance imaging (cmr) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 22(1), 1–18 (2020)

    Article  Google Scholar 

  6. Lin, A., Kolossváry, M., Išgum, I., Maurovich-Horvat, P., Slomka, P.J., Dey, D.: Artificial intelligence: improving the efficiency of cardiovascular imaging. Expert Rev. Med. Dev. 17(6), 565–577 (2020)

    Article  Google Scholar 

  7. Gonzales, R.A., Lamy, J., Seemann, F., Heiberg, E., Onofrey, J.A., Peters, D.C.: TVnet: automated time-resolved tracking of the tricuspid valve plane in MRI long-axis cine images with a dual-stage deep learning pipeline. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 567–576. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_55

    Chapter  Google Scholar 

  8. Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Can. J. Cardiol. 38, 204–213 (2021)

    Article  Google Scholar 

  9. Fries, J.A., et al.: Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nat. Commun. 10(1), 1–10 (2019)

    Article  Google Scholar 

  10. Guala, A., et al.: Machine learning to automatically detect anatomical landmarks on phase-contrast enhanced magnetic resonance angiography. Eur. Heart J.-Cardiovasc. Imaging 22(Supplement_2), jeab090-122 (2021)

    Google Scholar 

  11. Mejia Cordova, M., et al.: Reinforcement machine learning-based aortic anatomical landmarks detection from phase-contrast enhanced magnetic resonance angiography. Eur. Heart J.-Cardiovasc. Imaging 22(Supplement_1), jeaa356-286 (2021)

    Google Scholar 

  12. Ebbers, T.: Flow imaging: cardiac applications of 3D cine phase-contrast MRI. Curr. Cardiovasc. Imaging Rep. 4(2), 127–133 (2011)

    Article  Google Scholar 

  13. Johnson, E.M., et al.: Detecting aortic valve-induced abnormal flow with seismocardiography and cardiac MRI. Ann. Biomed. Eng. 48(6), 1779–1792 (2020)

    Article  Google Scholar 

  14. Ho,T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UKRI CDT in AI for Healthcare http://ai4health.io (Grant No. EP/S023283/1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavitha Vimalesvaran .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 413 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vimalesvaran, K. et al. (2022). Detecting Aortic Valve Pathology from the 3-Chamber Cine Cardiac MRI View. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics