Skip to main content

Multimodal Contrastive Learning for Prospective Personalized Estimation of CT Organ Dose

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The increasing frequency of computed tomography (CT) examinations has sparked development of dose reduction techniques to reduce the radiation dose to patients. Optimal dose while maintaining image quality can be achieved through accurate and realistic dose estimates. Unfortunately, existing dosimetric measures are either prohibitively slow or heavily reliant on absorbed dose within a cylindrical phantom, thereby ignoring the impact of patient anatomy and organ radiosensitivity on effective dose. We propose a novel deep learning-based patient-specific CT organ dose estimation method namely, multimodal contrastive learning with Scout images (Scout-MCL). Our proposed Scout-MCL gives accurate and realistic dose estimates in real-time and prospectively, by learning from multi-modal information leveraging image (lateral and frontal scouts) and profile (patient body size). Additionally, the incorporation of an accurately modeled tube current modulation (TCM) enables Scout-MCL to learn realistic dose variations. We evaluate our proposed method on a scout-CT paired scan dataset and show its effectiveness on predicting diverse TCM doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3478–3488 (2021)

    Google Scholar 

  2. Badal, A., Badano, A.: Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Med. Phys. 36(11), 4878–4880 (2009)

    Article  Google Scholar 

  3. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. Adv. Neural Inf. Process. Syst. 33, 12546–12558 (2020)

    Google Scholar 

  4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  5. Dutta, S., Das, B., Kaushik, S.: Assessment of optimal deep learning configuration for vertebrae segmentation from CT images. In: Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, vol. 10954, pp. 298–305. SPIE (2019)

    Google Scholar 

  6. Fan, J., Xing, L., Dong, P., Wang, J., Hu, W., Yang, Y.: Data-driven dose calculation algorithm based on deep U-Net. Phys. Med. Biol. 65(24), 245035 (2020)

    Article  Google Scholar 

  7. Furhang, E.E., Chui, C.S., Sgouros, G.: A Monte Carlo approach to patient-specific dosimetry. Med. Phys. 23(9), 1523–1529 (1996)

    Article  Google Scholar 

  8. Götz, T.I., Schmidkonz, C., Chen, S., Al-Baddai, S., Kuwert, T., Lang, E.: A deep learning approach to radiation dose estimation. Phys. Med. Biol. 65(3), 035007 (2020)

    Article  Google Scholar 

  9. Guerreiro, F.: Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiotherapy Oncol. 156, 36–42 (2021)

    Article  Google Scholar 

  10. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  11. Hardy, A.J., Bostani, M., Kim, G.H.J., Cagnon, C.H., Zankl, M., McNitt-Gray, M.: Evaluating size-specific dose estimate (SSDE) as an estimate of organ doses from routine CT exams derived from monte carlo simulations. Med. Phys. 48, 6160–6173 (2021)

    Article  Google Scholar 

  12. Imran, A.-A.-Z., Wang, S., Pal, D., Dutta, S., Patel, B., Zucker, E., Wang, A.: Personalized CT organ dose estimation from scout images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 488–498. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_47

    Chapter  Google Scholar 

  13. Jadick, G., Abadi, E., Harrawood, B., Sharma, S., Segars, W.P., Samei, E.: A scanner-specific framework for simulating CT images with tube current modulation. Phys. Med. Biol. 66(18), 185010 (2021)

    Article  Google Scholar 

  14. Kinakh, V., Taran, O., Voloshynovskiy, S.: Scatsimclr: self-supervised contrastive learning with pretext task regularization for small-scale datasets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1098–1106 (2021)

    Google Scholar 

  15. Lell, M.M., Kachelrieß, M.: Recent and upcoming technological developments in computed tomography: high speed, low dose, deep learning, multienergy. Invest. Radiol. 55(1), 8–19 (2020)

    Article  Google Scholar 

  16. Leng, S., Shiung, M., Duan, X., Yu, L., Zhang, Y., McCollough, C.H.: Size-specific dose estimates for chest, abdominal, and pelvic CT: effect of intrapatient variability in water-equivalent diameter. Radiology 276(1), 184–190 (2015)

    Article  Google Scholar 

  17. Li, X., Segars, W.P., Samei, E.: The impact on CT dose of the variability in tube current modulation technology: a theoretical investigation. Phys. Med. Biol. 59(16), 4525 (2014)

    Article  Google Scholar 

  18. Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  19. Maier, J., Eulig, E., Dorn, S., Sawall, S., Kachelrieß, M.: Real-time patient-specific CT dose estimation using a deep convolutional neural network. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pp. 1–3. IEEE (2018)

    Google Scholar 

  20. McCollough, C., et al.: Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep. 2014, 6 (2014)

    Google Scholar 

  21. Wang, S., Imran, A., Pal, D., Zucker, E., Wang, A.: Fast monte carlo simulation of non-isotropic x-ray source for CT dose calculation. In: Medical Physics, vol. 48. Wiley, Hoboken (2021)

    Google Scholar 

  22. Willemink, M.J., Persson, M., Pourmorteza, A., Pelc, N.J., Fleischmann, D.: Photon-counting CT: technical principles and clinical prospects. Radiology 289(2), 293–312 (2018)

    Article  Google Scholar 

  23. Withers, P.J., et al.: X-ray computed tomography. Nat. Rev. Methods Primers 1(1), 1–21 (2021)

    Article  Google Scholar 

  24. Yuan, X., et al.: Multimodal contrastive training for visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6995–7004 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah-Al-Zubaer Imran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imran, AAZ., Wang, S., Pal, D., Dutta, S., Zucker, E., Wang, A. (2022). Multimodal Contrastive Learning for Prospective Personalized Estimation of CT Organ Dose. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13431. Springer, Cham. https://doi.org/10.1007/978-3-031-16431-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16431-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16430-9

  • Online ISBN: 978-3-031-16431-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics