Skip to main content

Predicting Molecular Traits from Tissue Morphology Through Self-interactive Multi-instance Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

Previous efforts to learn histology features that correlate with specific genetic/molecular traits resort to tile-level multi-instance learning (MIL) which relies on a fixed pretrained model for feature extraction and an instance-bag classifier. We argue that such a two-step approach is not optimal at capturing both fine-grained features at tile level and global features at slide level optimal to the task. We propose a self-interactive MIL that iteratively feedbacks training information between the fine-grained and global context features. We validate the proposed approach on 4 subtyping tasks: EMT status (ovarian), KRAS mutation (colon and lung), EGFR mutation (colon), and HER2 status (breast). Our approach yields an average improvement of \(7.05\%-8.34\%\) (in terms of AUC) over the baseline.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/superhy/LCSB-MIL.

References

  1. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019)

    Google Scholar 

  2. Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 7, 100198 (2022)

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2020)

    Google Scholar 

  5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2300 (2016)

    Google Scholar 

  6. Hashimoto, N., et al.: Multi-scale domain-adversarial multiple-instance CNN for cancer subtype classification with unannotated histopathological images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3852–3861 (2020)

    Google Scholar 

  7. Hu, Z., et al.: The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells. Cancer Cell 37(2), 226–242 (2020)

    Google Scholar 

  8. Hu, Z., et al.: The oxford classic links epithelial-to-mesenchymal transition to immunosuppression in poor prognosis ovarian cancers. Clin. Cancer Res. 27(5), 1570–1579 (2021)

    Google Scholar 

  9. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  10. Kalra, S., et al.: Pay attention with focus: a novel learning scheme for classification of whole slide images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 350–359. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_34

  11. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2021)

    Google Scholar 

  12. Li, H., et al.: DT-MIL: deformable transformer for multi-instance learning on histopathological image. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_20

  13. Li, J., et al.: A multi-resolution model for histopathology image classification and localization with multiple instance learning. Comput. Biol. Med. 131, 104253 (2021)

    Google Scholar 

  14. Lu, M.Y., et al.: Ai-based pathology predicts origins for cancers of unknown primary. Nature 594(7861), 106–110 (2021)

    Google Scholar 

  15. Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  Google Scholar 

  16. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  18. Shao, Z., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural Inf. Process. Syst. 34 (2021)

    Google Scholar 

  19. Sirinukunwattana, K., et al.: Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut 70(3), 544–554 (2021)

    Google Scholar 

  20. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 19(1A), A68 (2015)

    Google Scholar 

Download references

Acknowledgements

We thank Stefano Malacrino and Nasullah Khalid Alham for providing technical support. Financial support: YU, CV and JR - National Institute for Health Research (NIHR) Oxford Biomedical Research Centre; KS, CV, and JR - Innovate UK funded PathLAKE consortium; KG - Clinical Lectureship from the National Institute for Health Research (NIHR, grant no. CL-2017-13-001); RW - EPSRC Centre for Doctoral Training in Health Data Science (EP/S02428X/1) and Oxford CRUK Centre for Cancer Research. Computation used the Oxford Biomedical Research Computing (BMRC) facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rittscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Y., Sirinukunwattana, K., Gaitskell, K., Wood, R., Verrill, C., Rittscher, J. (2022). Predicting Molecular Traits from Tissue Morphology Through Self-interactive Multi-instance Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics