Skip to main content

Frequency-Aware Inverse-Consistent Deep Learning for OCT-Angiogram Super-Resolution

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13432))

Abstract

Optical Coherence Tomography Angiography (OCTA) is a novel imaging modality that captures the retinal and choroidal microvasculature in a non-invasive way. So far, 3 mm \(\times \) 3 mm and 6 mm \(\times \) 6 mm scanning protocols have been the two most widely-used field-of-views. Nevertheless, since both are acquired with the same number of A-scans, resolution of 6 mm \(\times \) 6 mm image is inadequately sampled, compared with 3 mm \(\times \) 3 mm. Moreover, conventional supervised super-resolution methods for OCTA images are trained with pixel-wise registered data, while clinical data is mostly unpaired. This paper proposes an inverse-consistent generative adversarial network (GAN) for archiving 6 mm \(\times \) 6 mm OCTA images with super-resolution. Our method is designed to be trained with unpaired 3 mm \(\times \) 3 mm and 6 mm \(\times \) 6 mm OCTA image datasets. To further enhance the super-resolution performance, we introduce frequency transformations to refine high-frequency information while retaining low-frequency information. Compared with other state-of-the-art methods, our approach outperforms them on various performance metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Carlo, T.E., Salz, D.A., Waheed, N.K., Baumal, C.R., Duker, J.S., Witkin, A.J.: Visualization of the retinal vasculature using wide-field montage optical coherence tomography angiography. Ophthal. Surg. Lasers Imaging Retina 46(6), 611 (2015)

    Article  Google Scholar 

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Synergistic image and feature adaptation: towards cross-modality domain adaptation for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 865–872 (2019)

    Google Scholar 

  3. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  4. Cheung, C.M.G., et al.: Diabetic macular ischaemia-a new therapeutic target? Prog. Retinal Eye Res. 101033 (2021)

    Google Scholar 

  5. Cotter, F.: Uses of Complex Wavelets in Deep Convolutional Neural Networks. Ph.D. thesis, University of Cambridge (2020)

    Google Scholar 

  6. Fritsche, M., Gu, S., Timofte, R.: Frequency separation for real-world super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3599–3608. IEEE (2019)

    Google Scholar 

  7. Gao, M., Guo, Y., Hormel, T., Sun, J., Hwang, T., Jia, Y.: Reconstruction of high-resolution 6\(\times \)6-mm oct angiograms using deep learning. Biomed. Opt. Exp. 11, 3585–3600 (2020). https://doi.org/10.1364/BOE.394301

    Article  Google Scholar 

  8. Gao, M., et al.: An open-source deep learning network for reconstruction of high-resolution oct angiograms of retinal intermediate and deep capillary plexuses. Investigat. Ophthalmol. Vis. Sci. 62, 1032–1032 (2021). https://doi.org/10.1167/tvst.10.13.13

    Article  Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  12. Hwang, T.S., et al.: Optical coherence tomography angiography features of diabetic retinopathy. Retina 35(11), 2371 (2015)

    Article  Google Scholar 

  13. Jia, Y., et al.: Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc. Natl. Acad. Sci. 112(18), E2395–E2402 (2015)

    Google Scholar 

  14. Jia, Y., et al.: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7), 1435–1444 (2014)

    Google Scholar 

  15. Kim, G., et al.: Unsupervised real-world super resolution with cycle generative adversarial network and domain discriminator. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 456–457 (2020)

    Google Scholar 

  16. Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world super-resolution. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3408–3416. IEEE (2019)

    Google Scholar 

  17. Maeda, S.: Unpaired image super-resolution using pseudo-supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 291–300 (2020)

    Google Scholar 

  18. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  19. Roisman, L., et al.: Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. Ophthalmology 123(6), 1309–1319 (2016)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  21. Rosen, R.B., et al.: Earliest evidence of preclinical diabetic retinopathy revealed using optical coherence tomography angiography perfused capillary density. Am. J. Ophthalmol. 203, 103–115 (2019)

    Google Scholar 

  22. Sun, Z.,et al.: Oct angiography metrics predict progression of diabetic retinopathy and development of diabetic macular edema: a prospective study. Ophthalmology 126(12), 1675–1684 (2019)

    Google Scholar 

  23. Tang, F.Y., et al.: Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci. Rep. 7(1), 1–10 (2017)

    Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Wei, Y., Gu, S., Li, Y., Timofte, R., Jin, L., Song, H.: Unsupervised real-world image super resolution via domain-distance aware training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13385–13394 (2021)

    Google Scholar 

  26. Wong, T.Y., Cheung, C.M.G., Larsen, M., Sharma, S., Simó, R.: Diabetic retinopathy. Nat. Rev. Dis. Primers 2(1), 16012 (2016)

    Google Scholar 

  27. Yang, D.W., et al.: Clinically relevant factors associated with a binary outcome of diabetic macular ischaemia: an octa study. Br. J. Ophthalmol. (2022). https://doi.org/10.1136/bjophthalmol-2021-320779

  28. Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 701–710 (2018)

    Google Scholar 

  29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Computer Vision (ICCV), 2017 IEEE International Conference on (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by funding from Center for Aging Science, Hong Kong University of Science and Technology, and Shenzhen Science and Technology Innovation Committee (Project No. SGDX20210823103201011), and Direct Grants from The Chinese University of Hong Kong (Project Code: 4054419 & 4054487).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W., Yang, D., Cheung, C.Y., Chen, H. (2022). Frequency-Aware Inverse-Consistent Deep Learning for OCT-Angiogram Super-Resolution. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics