Abstract
Acquiring pixel-level annotation has been a major challenge for machine learning methods in medical image analysis. Such difficulty mainly comes from two sources: localization requiring high expertise, and delineation requiring tedious and time-consuming work. Existing methods of easing the annotation effort mostly focus on the latter one, the extreme of which is replacing the delineation with a single label for all cases. We postulate that under a clinical-realistic setting, such methods alone may not always be effective in reducing the annotation requirements from conventional classification/detection algorithms, because the major difficulty can come from localization, which is often neglected but can be critical in medical domain, especially for histopathology images. In this work, we performed a worst-case scenario study to identify the information loss from missing detection. To tackle the challenge, we 1) proposed a different annotation strategy to image data with different levels of disease severity, 2) combined semi- and self-supervised representation learning with probabilistic weakly supervision to make use of the proposed annotations, and 3) illustrated its effectiveness in recovering useful information under the worst-case scenario. As a shift from previous convention, it can potentially save significant time for experts’ annotation for AI model development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34
Cai, J., et al.: Accurate weakly-supervised deep lesion segmentation using large-scale clinical annotations: slice-propagated 3D mask generation from 2D RECIST. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 396–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_46
Ciga, O., Xu, T., Martel, A.L.: Self supervised contrastive learning for digital histopathology. arXiv preprint arXiv:2011.13971 (2020)
Courtiol, P., Tramel, E.W., Sanselme, M., Wainrib, G.: Classification and disease localization in histopathology using only global labels: a weakly-supervised approach. CoRR arXiv:1802.02212 (2018)
Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV 2015, USA, pp. 1635–1643 (2015)
Ehteshami Bejnordi, B., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, 20–22 June 2016, vol. 48, pp. 1050–1059 (2016)
Gao, Z., Puttapirat, P., Shi, J., Li, C.: Renal cell carcinoma detection and subtyping with minimal point-based annotation in whole-slide images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 439–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_42
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)
Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1674, July 2017
Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. In: Medical Imaging with Deep Learning (2018)
Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3159–3167, June 2016
Maninis, K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: from extreme points to object segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 616–625, June 2018
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Ng, J.C., Swain, S., Dowling, J.P., Wolfe, R., Simpson, P., Kelly, J.W.: The impact of partial biopsy on histopathologic diagnosis of cutaneous melanoma: experience of an Australian tertiary referral service. Arch. Dermatol. 146(3), 234–239 (2010)
Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1742–1750 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Roth, H.R., Yang, D., Xu, Z., Wang, X., Xu, D.: Going to extremes: weakly supervised medical image segmentation (2020)
Tokunaga, H., Iwana, B.K., Teramoto, Y., Yoshizawa, A., Bise, R.: Negative pseudo labeling using class proportion for semantic segmentation in pathology. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 430–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_26
Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24
Westra, W.H., Kronz, J.D., Eisele, D.W.: The impact of second opinion surgical pathology on the practice of head and neck surgery: a decade experience at a large referral hospital. Head Neck 24(7), 684–693 (2002)
Xu, Y., Zhu, J.Y., Chang, E.I.C., Lai, M., Tu, Z.: Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 18(3), 591–604 (2014)
Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Shi, J.: Tracing diagnosis paths on histopathology WSIs for diagnostically relevant case recommendation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 459–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_44
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, Z. et al. (2022). Clinical-Realistic Annotation for Histopathology Images with Probabilistic Semi-supervision: A Worst-Case Study. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-16434-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16433-0
Online ISBN: 978-3-031-16434-7
eBook Packages: Computer ScienceComputer Science (R0)