Skip to main content

Multi-view Local Co-occurrence and Global Consistency Learning Improve Mammogram Classification Generalisation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

When analysing screening mammograms, radiologists can naturally process information across two ipsilateral views of each breast, namely the cranio-caudal (CC) and mediolateral-oblique (MLO) views. These multiple related images provide complementary diagnostic information and can improve the radiologist’s classification accuracy. Unfortunately, most existing deep learning systems, trained with globally-labelled images, lack the ability to jointly analyse and integrate global and local information from these multiple views. By ignoring the potentially valuable information present in multiple images of a screening episode, one limits the potential accuracy of these systems. Here, we propose a new multi-view global-local analysis method that mimics the radiologist’s reading procedure, based on a global consistency learning and local co-occurrence learning of ipsilateral views in mammograms. Extensive experiments show that our model outperforms competing methods, in terms of classification accuracy and generalisation, on a large-scale private dataset and two publicly available datasets, where models are exclusively trained and tested with global labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Similarly to the meta-repository in [26], we remove the study #D1-0951 as the pre-processing failed in this examination.

  2. 2.

    https://github.com/nyukat/GMIC.

  3. 3.

    https://github.com/nyukat/GMIC/issues/4.

  4. 4.

    https://github.com/nyukat/breast_cancer_classifier.

  5. 5.

    The breast-level result is obtained by averaging the predictions from both views.

References

  1. Carneiro, G., Nascimento, J., Bradley, A.P.: Automated analysis of unregistered multi-view mammograms with deep learning. IEEE Trans. Med. Imaging 36(11), 2355–2365 (2017)

    Article  Google Scholar 

  2. Dembrower, K., Lindholm, P., Strand, F.: A multi-million mammography image dataset and population-based screening cohort for the training and evaluation of deep neural networks-the cohort of screen-aged women (CSAW). J. Digit. Imaging 33(2), 408–413 (2020)

    Article  Google Scholar 

  3. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  4. Frazer, H.M., Qin, A.K., Pan, H., Brotchie, P.: Evaluation of deep learning-based artificial intelligence techniques for breast cancer detection on mammograms: results from a retrospective study using a BreastScreen Victoria dataset. J. Med. Imaging Radiat. Oncol. 65(5), 529–537 (2021)

    Article  Google Scholar 

  5. Freeman, K., et al.: Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy. bmj 374 (2021)

    Google Scholar 

  6. Hackshaw, A., Wald, N., Michell, M., Field, S., Wilson, A.: An investigation into why two-view mammography is better than one-view in breast cancer screening. Clin. Radiol. 55(6), 454–458 (2000)

    Article  Google Scholar 

  7. Halling-Brown, M.D., et al.: Optimam mammography image database: a large-scale resource of mammography images and clinical data. Radiol.: Artif. Intell. 3(1), e200103 (2020)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597 (2018)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Lauby-Secretan, B., et al.: Breast-cancer screening-viewpoint of the IARC working group. N. Engl. J. Med. 372(24), 2353–2358 (2015)

    Article  Google Scholar 

  12. Liu, K., Shen, Y., Wu, N., Chlkedowski, J., Fernandez-Granda, C., Geras, K.J.: Weakly-supervised high-resolution segmentation of mammography images for breast cancer diagnosis. arXiv preprint arXiv:2106.07049 (2021)

  13. Ma, J., Li, X., Li, H., Wang, R., Menze, B., Zheng, W.S.: Cross-view relation networks for mammogram mass detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8632–8638. IEEE (2021)

    Google Scholar 

  14. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: INbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  15. Nolan, T.: The Chinese mammography database (CMMD) (2021). https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=70230508. Accessed 21 Aug 2021

  16. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  18. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  20. Selvi, R.: Breast Diseases: Imaging and Clinical Management. Springer, Cham (2014)

    Google Scholar 

  21. Shen, L.: End-to-end training for whole image breast cancer diagnosis using an all convolutional design. arXiv preprint arXiv:1711.05775 (2017)

  22. Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W.: Deep learning to improve breast cancer detection on screening mammography. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  23. Shen, Y., et al.: Globally-aware multiple instance classifier for breast cancer screening. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 18–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_3

    Chapter  Google Scholar 

  24. Shen, Y., et al.: An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Med. Image Anal. 68, 101908 (2021)

    Google Scholar 

  25. Smith, K.: CBIS-DDSM (2021). https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM. Accessed 21 Aug 2021

  26. Stadnick, B., et al.: Meta-repository of screening mammography classifiers. arxiv:2108.04800 (2021)

  27. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  28. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  29. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  30. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  31. Wu, N., et al.: The NYU breast cancer screening dataset v1.0. Technical report, New York University (2019). https://cs.nyu.edu/~kgeras/reports/datav1.0.pdf

  32. Yang, Z., et al.: MommiNet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 102204 (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by funding from the Australian Government under the Medical Research Future Fund - Grant MRFAI000090 for the Transforming Breast Cancer Screening with Artificial Intelligence (BRAIx) Project. We thank the St Vincent’s Institute of Medical Research for providing the GPUs to support the numerical calculations in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanhong Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1106 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2022). Multi-view Local Co-occurrence and Global Consistency Learning Improve Mammogram Classification Generalisation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics