Abstract
Estimating depth information from endoscopic images is a prerequisite for a wide set of AI-assisted technologies, such as accurate localization and measurement of tumors, or identification of non-inspected areas. As the domain specificity of colonoscopies –deformable low-texture environments with fluids, poor lighting conditions and abrupt sensor motions– pose challenges to multi-view 3D reconstructions, single-view depth learning stands out as a promising line of research. Depth learning can be extended in a Bayesian setting, which enables continual learning, improves decision making and can be used to compute confidence intervals or quantify uncertainty for in-body measurements. In this paper, we explore for the first time Bayesian deep networks for single-view depth estimation in colonoscopies. Our specific contribution is two-fold: 1) an exhaustive analysis of scalable Bayesian networks for depth learning in different datasets, highlighting challenges and conclusions regarding synthetic-to-real domain changes and supervised vs. self-supervised methods; and 2) a novel teacher-student approach to deep depth learning that takes into account the teacher uncertainty.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azagra, P., et al.: Endomapper dataset of complete calibrated endoscopy procedures (2022). https://arxiv.org/abs/2204.14240
Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: SLAM endoscopy enhanced by adversarial depth prediction. In: KDD Workshop on Applied Data Science for Healthcare (2019)
Cheng, K., Ma, Y., Sun, B., Li, Y., Chen, X.: Depth estimation for colonoscopy images with self-supervised learning from videos. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 119–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_12
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)
Freedman, D.: Detecting deficient coverage in colonoscopies. IEEE Trans. Med. Imaging 39(11), 3451–3462 (2020)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR (2018)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)
Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)
Gustafsson, F.K., Danelljan, M., Schon, T.B.: Evaluating scalable Bayesian deep learning methods for robust computer vision. In: CVPR Workshops (2020)
Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)
Huang, B., et al.: Self-supervised generative adversarial network for depth estimation in laparoscopic images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 227–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_22
Hwang, S.J., Park, S.J., Kim, G.M., Baek, J.H.: Unsupervised monocular depth estimation for colonoscope system using feedback network. Sensors 21(8), 2691 (2021)
Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 677–693. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_40
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS (2017)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)
Li, Z., et al.: On the sins of image synthesis loss for self-supervised depth estimation. arXiv preprint arXiv:2109.06163 (2021)
Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)
Luo, H., Hu, Q., Jia, F.: Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images. Healthc. Technol. Lett. 6(6), 154 (2019)
Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)
Mahmood, F., Durr, N.J.: Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med. Image Anal. 48, 230–243 (2018)
Ozyoruk, K.B., et al.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)
Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocular depth estimation. In: CVPR (2020)
Rau, A., et al.: Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1167–1176 (2019). https://doi.org/10.1007/s11548-019-01962-w
Recasens, D., Lamarca, J., Fácil, J.M., Montiel, J., Civera, J.: Endo-depth-and-motion: reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robot. Autom. Lett. 6(4), 7225–7232 (2021)
Rodriguez-Puigvert, J., Martinez-Cantin, R., Civera, J.: Bayesian deep neural networks for supervised learning of single-view depth. IEEE Robot. Autom. Lett. 7(2), 2565–2572 (2022)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Sharan, L., et al.: Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy. Curr. Dir. Biomed. Eng. 6(1), 1–5 (2020)
Shen, M., Gu, Y., Liu, N., Yang, G.Z.: Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot. Autom. Lett. 4(2), 732–739 (2019)
Song, M., Lim, S., Kim, W.: Monocular depth estimation using Laplacian pyramid-based depth residuals. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4381–4393 (2021)
Turan, M., et al.: Unsupervised odometry and depth learning for endoscopic capsule robots. In: IROS (2018)
Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1089–1099 (2017)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Widya, A.R., Monno, Y., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: Self-supervised monocular depth estimation in gastroendoscopy using GAN-augmented images. In: Medical Imaging 2021: Image Processing (2021)
Xu, K., Chen, Z., Jia, F.: Unsupervised binocular depth prediction network for laparoscopic surgery. Comput. Assist. Surg. 24(sup1), 30–35 (2019)
Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: CVPR (2018)
Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)
Acknowledgments
This work was supported by EndoMapper GA 863146 (EU-H2020), RTI2018-096903-B-I00, BES-2016-078426, PID2021-127685NB-I00 (FEDER/Spanish Government), DGA-T45 17R/FSE (Aragón Government).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 2 (mp4 24813 KB)
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rodriguez-Puigvert, J., Recasens, D., Civera, J., Martinez-Cantin, R. (2022). On the Uncertain Single-View Depths in Colonoscopies. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-16437-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16436-1
Online ISBN: 978-3-031-16437-8
eBook Packages: Computer ScienceComputer Science (R0)