Skip to main content

On the Uncertain Single-View Depths in Colonoscopies

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Estimating depth information from endoscopic images is a prerequisite for a wide set of AI-assisted technologies, such as accurate localization and measurement of tumors, or identification of non-inspected areas. As the domain specificity of colonoscopies –deformable low-texture environments with fluids, poor lighting conditions and abrupt sensor motions– pose challenges to multi-view 3D reconstructions, single-view depth learning stands out as a promising line of research. Depth learning can be extended in a Bayesian setting, which enables continual learning, improves decision making and can be used to compute confidence intervals or quantify uncertainty for in-body measurements. In this paper, we explore for the first time Bayesian deep networks for single-view depth estimation in colonoscopies. Our specific contribution is two-fold: 1) an exhaustive analysis of scalable Bayesian networks for depth learning in different datasets, highlighting challenges and conclusions regarding synthetic-to-real domain changes and supervised vs. self-supervised methods; and 2) a novel teacher-student approach to deep depth learning that takes into account the teacher uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azagra, P., et al.: Endomapper dataset of complete calibrated endoscopy procedures (2022). https://arxiv.org/abs/2204.14240

  2. Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: SLAM endoscopy enhanced by adversarial depth prediction. In: KDD Workshop on Applied Data Science for Healthcare (2019)

    Google Scholar 

  3. Cheng, K., Ma, Y., Sun, B., Li, Y., Chen, X.: Depth estimation for colonoscopy images with self-supervised learning from videos. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 119–128. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_12

    Chapter  Google Scholar 

  4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: Part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  5. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)

    Google Scholar 

  6. Freedman, D.: Detecting deficient coverage in colonoscopies. IEEE Trans. Med. Imaging 39(11), 3451–3462 (2020)

    Google Scholar 

  7. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: CVPR (2018)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  9. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)

    Google Scholar 

  10. Gustafsson, F.K., Danelljan, M., Schon, T.B.: Evaluating scalable Bayesian deep learning methods for robust computer vision. In: CVPR Workshops (2020)

    Google Scholar 

  11. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  12. Huang, B., et al.: Self-supervised generative adversarial network for depth estimation in laparoscopic images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 227–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_22

    Chapter  Google Scholar 

  13. Hwang, S.J., Park, S.J., Kim, G.M., Baek, J.H.: Unsupervised monocular depth estimation for colonoscope system using feedback network. Sensors 21(8), 2691 (2021)

    Article  Google Scholar 

  14. Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 677–693. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_40

    Chapter  Google Scholar 

  15. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS (2017)

    Google Scholar 

  16. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)

    Google Scholar 

  17. Li, Z., et al.: On the sins of image synthesis loss for self-supervised depth estimation. arXiv preprint arXiv:2109.06163 (2021)

  18. Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39(5), 1438–1447 (2019)

    Article  Google Scholar 

  19. Luo, H., Hu, Q., Jia, F.: Details preserved unsupervised depth estimation by fusing traditional stereo knowledge from laparoscopic images. Healthc. Technol. Lett. 6(6), 154 (2019)

    Article  Google Scholar 

  20. Mahmood, F., Chen, R., Durr, N.J.: Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans. Med. Imaging 37(12), 2572–2581 (2018)

    Article  Google Scholar 

  21. Mahmood, F., Durr, N.J.: Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med. Image Anal. 48, 230–243 (2018)

    Article  Google Scholar 

  22. Ozyoruk, K.B., et al.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)

    Article  Google Scholar 

  23. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocular depth estimation. In: CVPR (2020)

    Google Scholar 

  24. Rau, A., et al.: Implicit domain adaptation with conditional generative adversarial networks for depth prediction in endoscopy. Int. J. Comput. Assist. Radiol. Surg. 14(7), 1167–1176 (2019). https://doi.org/10.1007/s11548-019-01962-w

    Article  Google Scholar 

  25. Recasens, D., Lamarca, J., Fácil, J.M., Montiel, J., Civera, J.: Endo-depth-and-motion: reconstruction and tracking in endoscopic videos using depth networks and photometric constraints. IEEE Robot. Autom. Lett. 6(4), 7225–7232 (2021)

    Article  Google Scholar 

  26. Rodriguez-Puigvert, J., Martinez-Cantin, R., Civera, J.: Bayesian deep neural networks for supervised learning of single-view depth. IEEE Robot. Autom. Lett. 7(2), 2565–2572 (2022)

    Article  Google Scholar 

  27. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  28. Sharan, L., et al.: Domain gap in adapting self-supervised depth estimation methods for stereo-endoscopy. Curr. Dir. Biomed. Eng. 6(1), 1–5 (2020)

    Google Scholar 

  29. Shen, M., Gu, Y., Liu, N., Yang, G.Z.: Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot. Autom. Lett. 4(2), 732–739 (2019)

    Article  Google Scholar 

  30. Song, M., Lim, S., Kim, W.: Monocular depth estimation using Laplacian pyramid-based depth residuals. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4381–4393 (2021)

    Article  Google Scholar 

  31. Turan, M., et al.: Unsupervised odometry and depth learning for endoscopic capsule robots. In: IROS (2018)

    Google Scholar 

  32. Visentini-Scarzanella, M., Sugiura, T., Kaneko, T., Koto, S.: Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int. J. Comput. Assist. Radiol. Surg. 12(7), 1089–1099 (2017)

    Article  Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  34. Widya, A.R., Monno, Y., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: Self-supervised monocular depth estimation in gastroendoscopy using GAN-augmented images. In: Medical Imaging 2021: Image Processing (2021)

    Google Scholar 

  35. Xu, K., Chen, Z., Jia, F.: Unsupervised binocular depth prediction network for laparoscopic surgery. Comput. Assist. Surg. 24(sup1), 30–35 (2019)

    Article  Google Scholar 

  36. Zhan, H., Garg, R., Saroj Weerasekera, C., Li, K., Agarwal, H., Reid, I.: Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: CVPR (2018)

    Google Scholar 

  37. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgments

This work was supported by EndoMapper GA 863146 (EU-H2020), RTI2018-096903-B-I00, BES-2016-078426, PID2021-127685NB-I00 (FEDER/Spanish Government), DGA-T45 17R/FSE (Aragón Government).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Rodriguez-Puigvert .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1125 KB)

Supplementary material 2 (mp4 24813 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodriguez-Puigvert, J., Recasens, D., Civera, J., Martinez-Cantin, R. (2022). On the Uncertain Single-View Depths in Colonoscopies. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics