Abstract
Universal Lesion Detection (ULD) in computed tomography plays an essential role in computer-aided diagnosis. Promising ULD results have been reported by multi-slice-input detection approaches which model 3D context from multiple adjacent CT slices, but such methods still experience difficulty in obtaining a global representation among different slices and within each individual slice since they only use convolution-based fusion operations. In this paper, we propose a novel Slice Attention Transformer (SATr) block which can be easily plugged into convolution-based ULD backbones to form hybrid network structures. Such newly formed hybrid backbones can better model long-distance feature dependency via the cascaded self-attention modules in the Transformer block while still holding a strong power of modeling local features with the convolutional operations in the original backbone. Experiments with five state-of-the-art methods show that the proposed SATr block can provide an almost free boost to lesion detection accuracy without extra hyperparameters or unique network designs. Code: https://github.com/MIRACLE-Center/A3D_SATr.
This research was supported in part by the Natural Science Foundation of China (grants 61732004 and 62176249).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zlocha, M., Dou, Q., Glocker, B.: Improving RetinaNet for CT lesion detection with dense masks from weak RECIST labels. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 402–410. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_45
Tao, Q., Ge, Z., Cai, J., Yin, J., See, S.: Improving deep lesion detection using 3D contextual and spatial attention. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 185–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_21
Zhang, N., et al.: 3D anchor-free lesion detector on computed tomography scans. arXiv:1908.11324 (2019)
Zhang, N., et al.: 3D aggregated faster R-CNN for general lesion detection. arXiv:2001.11071 (2020)
Tang, Y., et al.: Uldor: a universal lesion detector for CT scans with pseudo masks and hard negative example mining. In: IEEE ISBI, pp. 833–836 (2019)
Yan, K., Bagheri, M., Summers, R.M.: 3D context enhanced region-based convolutional neural network for end-to-end lesion detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 511–519. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_58
Li, Z., Zhang, S., Zhang, J., Huang, K., Wang, Y., Yu, Y.: MVP-Net: multi-view FPN with position-aware attention for deep universal lesion detection. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 13–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_2
Yan, K., et al.: MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 194–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_22
Yang, J., et al.: AlignShift: bridging the gap of imaging thickness in 3D anisotropic volumes. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_55
Cai, J., et al.: Deep volumetric universal lesion detection using light-weight pseudo 3D convolution and surface point regression. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 3–13. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_1
Li, H., Han, H., Zhou, S.K.: Bounding maps for universal lesion detection. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 417–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_41
Zhang, S., et al.: Revisiting 3D context modeling with supervised pre-training for universal lesion detection in CT slices. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 542–551. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_53
Yan, K., et al.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT. IEEE Trans. Med. Imaging 40, 2759–2770 (2020)
Cai, J., et al.: Deep lesion tracker: monitoring lesions in 4D longitudinal imaging studies. In: IEEE CVPR, pp. 15159–15169 (2021)
Tang, Y., et al.: Weakly-supervised universal lesion segmentation with regional level set loss. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 515–525. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_48
Yang, J., He, Y., Kuang, K., Lin, Z., Pfister, H., Ni, B.: Asymmetric 3D context fusion for universal lesion detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 571–580. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_55
Li, H., Chen, L., Han, H., Chi, Y., Zhou, S.K.: Conditional training with bounding map for universal lesion detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 141–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_14
Lyu, F., Yang, B., Ma, A.J., Yuen, P.C.: A segmentation-assisted model for universal lesion detection with partial labels. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 117–127. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_12
Boot, T., Irshad, H.: Diagnostic assessment of deep learning algorithms for detection and segmentation of lesion in mammographic images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 56–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_6
Yu, X., et al.: Deep attentive panoptic model for prostate cancer detection using biparametric MRI scans. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 594–604. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_58
Ren, Y., et al.: Retina-match: ipsilateral mammography lesion matching in a single shot detection pipeline. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 345–354. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_33
Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nnDetection: a self-configuring method for medical object detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 530–539. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_51
Shahroudnejad, A., et al.: TUN-Det: a novel network for thyroid ultrasound nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 656–667. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_62
Luo, L., Chen, H., Zhou, Y., Lin, H., Heng, P.-A.: OXnet: deep omni-supervised thoracic disease detection from chest X-rays. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 537–548. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_50
Chen, J., Zhang, Y., Wang, J., Zhou, X., He, Y., Zhang, T.: EllipseNet: anchor-free ellipse detection for automatic cardiac biometrics in fetal echocardiography. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 218–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_21
Yang, H.-H., et al.: Leveraging auxiliary information from EMR for weakly supervised pulmonary nodule detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 251–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_24
Lin, C., Wu, H., Wen, Z., Qin, J.: Automated Malaria cells detection from blood smears under severe class imbalance via importance-aware balanced group softmax. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 455–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_44
Zhao, Z., Pang, F., Liu, Z., Ye, C.: Positive-unlabeled learning for cell detection in histopathology images with incomplete annotations. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 509–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_49
Kevin Zhou, S., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises (2021)
Kevin Zhou, S., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press (2019)
Huang, G., et al.: Densely connected convolutional networks. In: IEEE CVPR, pp. 4700–4708 (2017)
Lin, T., et al.: Feature pyramid networks for object detection. In: IEEE CVPR, pp. 2117–2125 (2017)
Peng, Z., et al.: Conformer: local features coupling global representations for visual recognition. In: IEEE ICCV, pp. 367–376 (2021)
Xu, Y., et al.: ViTAE: vision transformer advanced by exploring intrinsic inductive bias. In: NeurlIPS, vol. 34 (2021)
Mao, M., et al.: Dual-stream network for visual recognition. In: NeurlIPS, vol. 34 (2021)
Yan, K., et al.: Deep lesion graphs in the wild: relationship learning and organization of significant radiology image findings in a diverse large-scale lesion database. In: IEEE CVPR, pp. 9261–9270 (2018)
Zhu, X., et al.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
Gildenblat, J., et al.: Pytorch library for cam methods (2021). https://github.com/jacobgil/pytorch-grad-cam
Muhammad, M.B., et al. Eigen-CAM: class activation map using principal components. In: IEEE IJCNN, pp. 1–7 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, H., Chen, L., Han, H., Kevin Zhou, S. (2022). SATr: Slice Attention with Transformer for Universal Lesion Detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-16437-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16436-1
Online ISBN: 978-3-031-16437-8
eBook Packages: Computer ScienceComputer Science (R0)