Skip to main content

Effective Opportunistic Esophageal Cancer Screening Using Noncontrast CT Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Esophageal cancer is the second most deadly cancer. Early detection of resectable/curable esophageal cancers has a great potential to reduce mortality, but no guideline-recommended screening test is available. Although some screening methods have been developed, they are expensive, might be difficult to apply to the general population, and often fail to achieve satisfactory sensitivity for identifying early-stage cancers. In this work, we investigate the feasibility of esophageal tumor detection and classification (cancer or benign) on the noncontrast CT scan, which could potentially be used for opportunistic cancer screening. To capture the global context, a novel position-sensitive self-attention is proposed to augment nnUNet with non-local interactions. Our model achieves a sensitivity of 93.0% and specificity of 97.5% for the detection of esophageal tumors on a holdout testing set with 180 patients. In comparison, the mean sensitivity and specificity of four doctors are 75.0% and 83.8%, respectively. For the classification task, our model outperforms the mean doctors by absolute margins of 17%, 31%, and 14% for cancer, benign tumor, and normal, respectively. Compared with established state-of-the-art esophageal cancer screening methods, e.g., blood testing and endoscopy AI system, our method has comparable performance and is even more sensitive for early-stage cancer and benign tumor. Our proposed method is a novel, non-invasive, low-cost, and highly accurate tool for opportunistic screening of esophageal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U.S. Preventive Services Task Force (USPSTF), “Recommendations,”. https://www.uspreventiveservicestaskforce.org/uspstf/topic_search_results?topic_status=P

  2. Arnal, M.J.D., Arenas, Á.F., Arbeloa, Á.L.: Esophageal cancer: risk factors, screening and endoscopic treatment in western and eastern countries. World J. Gastroenterol. 21(26), 7933 (2015)

    Article  Google Scholar 

  3. Cheng, N.M., et al.: Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDG-PET imaging. Clin. Cancer Res. 27(14), 3948–3959 (2021)

    Article  Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Doki, Y., et al.: Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N. Engl. J. Med. 386(5), 449–462 (2022)

    Article  Google Scholar 

  6. Gehrung, M., Crispin-Ortuzar, M., Berman, A.G., O’Donovan, M., Fitzgerald, R.C., Markowetz, F.: Triage-driven diagnosis of Barrett’s esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat. Med. 27(5), 833–841 (2021)

    Article  Google Scholar 

  7. Heinrich, M.P., Jenkinson, M., Brady, M., Schnabel, J.A.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imaging 32(7), 1239–1248 (2013)

    Article  Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  9. Jang, S., Graffy, P.M., Ziemlewicz, T.J., Lee, S.J., Summers, R.M., Pickhardt, P.J.: Opportunistic osteoporosis screening at routine abdominal and thoracic CT: normative L1 trabecular attenuation values in more than 20 000 adults. Radiology 291(2), 360–367 (2019)

    Article  Google Scholar 

  10. Jin, D., et al.: Deeptarget: gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy. Med. Image Anal. 68, 101909 (2021)

    Article  Google Scholar 

  11. Klein, E., et al.: Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann. Oncol. 32(9), 1167–1177 (2021)

    Article  Google Scholar 

  12. Lambert, Z., Petitjean, C., Dubray, B., Kuan, S.: Segthor: segmentation of thoracic organs at risk in CT images. In: 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. IEEE (2020)

    Google Scholar 

  13. Luo, H., et al.: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study. Lancet Oncol. 20(12), 1645–1654 (2019)

    Article  Google Scholar 

  14. Pickhardt, P.J., et al.: Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Dig. Health 2(4), e192–e200 (2020)

    Article  Google Scholar 

  15. Qin, Y., Wu, C.W., Taylor, W.R., Sawas, T., Burger, K.N., Mahoney, D.W., Sun, Z., Yab, T.C., Lidgard, G.P., Allawi, H.T., et al.: Discovery, validation, and application of novel methylated DNA markers for detection of esophageal cancer in plasma. Clin. Cancer Res. 25(24), 7396–7404 (2019)

    Article  Google Scholar 

  16. Rice, T., Ishwaran, H., Hofstetter, W., Kelsen, D., Apperson-Hansen, C., Blackstone, E.: Recommendations for pathologic staging (PTNM) of cancer of the esophagus and esophagogastric junction for the 8th edition AJCC/UICC staging manuals. Dis. Esophagus 29(8), 897–905 (2016)

    Google Scholar 

  17. Thompson, W.M.: Esophageal carcinoma. Abdom. Imaging 22(2), 138–142 (1997). https://doi.org/10.1007/s002619900158

    Article  Google Scholar 

  18. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2021. CA: A Cancer Journal for Clinicians 71(1), 7–333 (2021)

    Google Scholar 

  19. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

    Chapter  Google Scholar 

  20. Wang, H., Zhu, Y., Green, B., Adam, H., Yuille, A., Chen, L.-C.: Axial-DeepLab: stand-alone axial-attention for panoptic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 108–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_7

    Chapter  Google Scholar 

  21. Wei, W.Q., Chen, Z.F., He, Y.T., Feng, H., Hou, J., Lin, D.M., Li, X.Q., Guo, C.L., Li, S.S., Wang, G.Q., et al.: Long-term follow-up of a community assignment, one-time endoscopic screening study of esophageal cancer in china. J. Clin. Oncol. 33(17), 1951 (2015)

    Article  Google Scholar 

  22. Xia, Y., et al.: Effective pancreatic cancer screening on non-contrast CT scans via anatomy-aware transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 259–269. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_25

    Chapter  Google Scholar 

  23. Yan, K., et al.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in CT. IEEE Trans. Med. Imaging 40, 2759–2770 (2021)

    Article  Google Scholar 

  24. Yao, J.: Deepprognosis: preoperative prediction of pancreatic cancer survival and surgical margin via comprehensive understanding of dynamic contrast-enhanced CT imaging and tumor-vascular contact parsing. Med. Image Anal. 73, 102150 (2021)

    Google Scholar 

  25. Ye, X., et al.: Multi-institutional validation of two-streamed deep learning method for automated delineation of esophageal gross tumor volume using planning-ct and fdg-petct. arXiv preprint arXiv:2110.05280 (2021)

  26. Yousefi, S., et al.: Esophageal gross tumor volume segmentation using a 3D convolutional neural network. In: Frangi, A.F., et al. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 343–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_40

    Chapter  Google Scholar 

  27. Zhang, L., Gopalakrishnan, V., Lu, L., Summers, R.M., Moss, J., Yao, J.: Self-learning to detect and segment cysts in lung CT images without manual annotation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1100–1103. IEEE (2018)

    Google Scholar 

  28. Zhou, D., et al.: Eso-net: a novel 2.5 d segmentation network with the multi-structure response filter for the cancerous esophagus. IEEE Access 8, 155548–155562 (2020)

    Google Scholar 

  29. Zhu, Z., et al.: Multi-scale coarse-to-fine segmentation for screening pancreatic ductal adenocarcinoma. In: Shen, D. (ed.) MICCAI 2019. LNCS, vol. 11769, pp. 3–12. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawen Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, J. et al. (2022). Effective Opportunistic Esophageal Cancer Screening Using Noncontrast CT Imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics