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Abstract. More than 55,000 people world-wide die from Cardiovascular
Disease (CVD) each day. Calcification of the abdominal aorta is an estab-
lished marker of asymptomatic CVD. It can be observed on scans taken
for vertebral fracture assessment from Dual Energy X-ray Absorptiome-
try machines. Assessment of Abdominal Aortic Calcification (AAC) and
timely intervention may help to reinforce public health messages around
CVD risk factors and improve disease management, reducing the global
health burden related to CVDs. Our research addresses this problem by
proposing a novel and reliable framework for automated “fine-grained” as-
sessment of AAC. Inspired by the vision-to-language models, our method
performs sequential scoring of calcified lesions along the length of the ab-
dominal aorta on DXA scans; mimicking the human scoring process.
Keywords: Abdominal Aortic Calcification · Sequential Prediction ·
Dual-Energy Xray.

1 Introduction
Cardiovascular Disease (CVD) is the leading cause of death globally, and a sig-
nificant contributor to disability worldwide [16]. Vascular calcification, a stable
marker of asymptomatic CVD, occurs when calcium builds up within the walls
of the arteries undergoing the atherosclerotic process, and often begins decades
before clinical events such as heart attacks or strokes [13]. The abdominal aorta
is one of the first vascular beds where calcification is seen, and is a marker for
generalised atherosclerosis at other vascular beds [21, 11]. The presence and ex-
tent of Abdominal Aortic Calcification (AAC) is associated with increased risk
of future cardiovascular hospitalizations and death [8]. Given that AAC often
occurs well before clinical events, this paper provides a window of opportunity
to identify people at risk and intervene in a timely manner before they suffer
cardiovascular events such as heart attacks or strokes [14].

The extent and severity of AAC can be assessed using lateral-lumbar radio-
graphs, lateral spine Vertebral Fracture Assessment (VFA) Dual-energy X-ray
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Absorptiometry (DXA) and Quantitative Computed Tomography (QCT). Out
of these, VFA DXA scans have the least amount of radiation but are of lower res-
olution and contain more noise. These scans can be used to semi-quantify AAC
using the widely adopted Kauppila 24-point scoring method (See Section 2.1 for
more details), which measures the calcification along the length of abdominal
aorta from L1-L4. However, acquiring manual assessments for DXA images is
not only time-consuming and expensive but also subjective [17].

The published methods [4, 3, 15] predict an overall AAC-24 score for each
scan. A brief summary of these methods is give in Section 2.2. For the sake of
reliability and explainablility, it is pertinent that the overall AAC-24 assessment
mimics the human scoring process. While a single AAC-24 score provides clini-
cally useful information on levels of cardiovascular risk, more granular (location
of calcification) scoring is required to provide results to general practitioners and
patients. Additionally, more granular scoring may provide better understanding
of why and how AAC develops and progresses. Finally, AAC in different parts of
the abdominal aorta may be more or less important for clinical outcomes such
as heart attacks, stroke or death.

We address the shortcomings of the existing methods by proposing an effec-
tive framework to generate the fine-grained scores in a sequential manner without
the need for ground truth annotations for the lumbar regions. We draw our in-
spiration from the vision-to-language domain, in particular image captioning [2],
where the task is to transform visual information into a sequence of words. We
intend to transform the images into a sequence of fine-grained AAC-24 scores.
Our attention based encoder-decoder network is a step towards mimicking the
human-like AAC-24 scoring method (see Section 2.1 for more details). Though
such models are quite popular in the language/vision-to-language domain, this is
the first time they have been used to address the particular problem of AAC-24
scoring. However, this domain adaptation comes with its own challenges. Lan-
guage has a syntax and a structure which is comparatively easier to learn by the
sequential models, provided they are trained on a large corpus of data. Moreover,
language is flexible as there can be a number of plausible solutions, and succes-
sive words in a sentence are predictable. In contrast, AAC-24 scores are rigid
(only three possibilities per segment per vertebrae), random, and the margin of
error is small. We also lack the advantage of having large annotated datasets.

Our model focuses on the most salient aortic regions while generating a se-
quence of scores. Moreover, our algorithm can classify patients into the three risk
categories of low, medium and high, with an accuracy, sensitivity, and specificity
of 82%, 74% and 80% respectively on the test set. The AAC-24 scores generated
by our algorithm are highly correlated (>80%) with human assessments.

In this context our contributions are as follows:
– For the first time, we frame the problem of generating fine-grained AAC

assessments as translating DXA scans to sequential scores.
– We propose an effective framework to generate fine-grained AAC-24 scores.

Our scoring process is more understandable because it is easier to compare
with the way humans score, and can point out regions adjacent to particular
vertebrae that are highly calcified.
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Fig. 1. AAC-24 scoring to quantify the severity of AAC. The scores of all eight segments
along with the AAC-24 scores are given in the tables alongside each image.
– Our attention-based model has independent decoders for assessing the an-

terior and posterior aortic walls, which leads to better performance when
compared to a single decoder for assessing both aortic walls.

– We show that despite the limited size of our dataset and severe class imbal-
ance, our model achieves a high level of correlation with human assessment.

2 Related Work
2.1 Kauppila Scale and AAC classes
We have used the 24-point semi-quantitative scale [6] (commonly known as the
AAC-24 scale), to quantify the extent of calcification in abdominal aorta. This is
the most widely used scale [17, 19] to assess the location, severity and progression
of calcified lesions on the anterior and posterior abdominal aortic walls in the
region parallel to the lower lumbar spine L1 – L4.

A score of ‘1’ is given if ≤ 1/3 of the aortic wall is calcified, ‘2’ if > 1/3 to
≤ 2/3 is calcified, or ‘3’ if > 2/3 is calcified. The anterior and posterior walls and
segments are then summed up, for a possible score of up to 24. The scores for
the anterior and posterior wall segments are summed (for a possible score of up
to 24). The whole process is time consuming (∼10 minutes), needs specialised
equipment (radiology monitor) and subjective (depends on training/experience
of reader). Furthermore, the aorta is not visible in the scans if there is no calci-
fication (Figure 1(b)).

Figure 1 shows three examples of the AAC-24 scoring, Figure 1(a) depicts
the anterior and posterior aortic walls. Images (b) and (c) are from our dataset,
where (b) reflects the difficulty in localizing the aorta when there is no calcifica-
tion. Figure 1(c) shows a severe case of AAC: calcific deposits can be observed
in each segment. We use the established severity categories: low (AAC-24 score
0 or 1), moderate (score 2–5) or high-risk (score ≥ 6) [18, 10, 9].
2.2 Automatic AAC Classification
We now summarize three relevant pieces of work available in the literature,
that perform automatic AAC classification based on the overall AAC-24 score
per image. Elmasri et al. [4] trained an Active Appearance Model on 20 DXA
VFA images to localize the vertebra L1-L4 and the part of aorta adjacent to
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these vertebra. Next, they fitted this model to 53 test scans to localize the aorta
and extract visual features to perform three-class classification using SVM and
KNN techniques. They used non-standard class boundaries to classify the test
images with an average accuracy of 92.9%. Chaplin et al. [3] followed a similar
process as [4] on 195 DXA VFA scans to extract the Region of Interest (ROI),
except that, they used a statistical shape model. The ROI in each scan was then
warped to straighten the spine which generally leads to loss of information in
a calcified aorta. Two separate U-net architectures were then used to segment
the calcification in the ROI as a whole, as well as segment-wise (anterior and
posterior). They report R2 coefficient of only 0.68 between ground truth scores
and segment-wise scores and R2 = 0.58 with predicted AAC-24 scores for the
whole image. Finally, Reid et al. [15] used a battery of CNNs to classify 1100
DXA VFA scans into three classes. They do not perform cross-validation, rather
they reported their results from a single train/validate/test run and selected
the network that gave them the best results. Their R2 coefficient between the
ground truth and predicted AAC-24 scores (for the whole scan) was 0.86 with
an accuracy of 88.1%. It is important to note that none of the methods discussed
above produce fine-grained AAC-24 scores.

3 Proposed Framework
Figure 2 (a) shows our proposed framework. It starts with an image pre-processing
module (for details see section 4.2) which crops and resizes the images. Once the
image is pre-possessed, it is passed on to the visual encoder to extract visual
feature maps. We choose a pre-trained Resnet152v2 as the encoder. However,
this is not a rigid choice and in future this could be replaced by other/better
models. We extract feature maps from the last convolutional layer without using
the classification layer of the pre-trained CNN. The feature maps are fed as in-
put to two individual decoders, each of which independently maximizes the log
likelihood over the parameter space:

θ∗ = argmax
θ

∑
(V,y)

log p(y|V ; θ) (1)

where θ represents the model parameters, V = [v1, v2, ..., vn] represents the
visual feature maps extracted from the pre-processed image, and y = {y1, y2...,
yt} is the sequence of segmented scores. The log-likelihood of the joint probability
distribution log p(y|V ; θ) can be decomposed as:

log p(y|V ; θ) =

T∑
(t=1)

log p(yt|y1, ...., yt−1, V ; θ) (2)

We use a Long-Short Term Memory (LSTM) module to generate y, therefore
the conditional probability log p(y|V ) (dropping θ for convenience) can be mod-
eled as log p(yt|y1, ...., yt−1, V ) = g(ht, ct) where g is a nonlinear function, ct is
the context vector and ht is the hidden state of the LSTM at time t. We can
model ht as ht = LSTM(st, ht−1,mt−1) where st is the input vector, and ht−1

and mt−1 are hidden state and memory cell vectors at time t-1, respectively.
To compute the context vector ct we use an attention module, such that the

context is dependent on specific regions in the image (via image feature maps)
as well as the decoder outputs. Therefore, ct can be defined as ct = q(V, ht−1)
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Fig. 2. Our proposed (a) framework for automatic fine-grained AAC scoring,(b) de-
tailed schematic of our attention-based decoders, and (c) attention module. Note that
Decoderant and Decoderpost have the same architecture.

where q is the attention function, and ht is the hidden state of the LSTM at
time t. The distribution of attention over the feature maps V (corresponding to
various regions of the image) is computed using a feed-forward network and can
be formalized as zt = W a tanh(W vV +Whht−1) and βt = softmax(zt) where
W a, W v and Wh are the learnable parameters, and β is the attention weight
over the feature maps V . Finally, ct can be computed as:

ct =
n∑

i=1

βtivti (3)

We train our model using weighted cross-entropy loss, where we set the
weights for each class based on the data distribution. We do not fine-tune our
encoder due the limited size of our dataset. Our two decoders, Decoderant and
Decoderpost (see Figure 2(b) and (c)), have similar architecture and are trained
independently to maximize the objective function given in Equation 2.
4 Experiments
4.1 Dataset
Our dataset is comprised of randomly selected 1,916 bone-density machine-
derived lateral-spine scans, obtained using iDXA GE machines [15] with a reso-
lution of at least 1600 x 300 pixels. The disease severity distribution of the 1,916
scan is: low risk 829, moderate risk 445 and high risk 642. Although, these scans
come with expert annotated AAC-24 scores [6], the location of calcified pixels
is not annotated on the scans. The distribution of AAC-24 scores in the dataset
(see Table 1) is very challenging as it has severe class imbalance. Specifically,
this distribution of zero scores is highly skewed for L1 and L2 perhaps because
vascular calcification usually starts around L4 and L3 and then progresses up-
wards [12]. In terms of sequences for anterior segments, our data has 176 unique
(out of 44 = 256 possible) combinations but only 29 of them appear more than
10 times. The most frequent sequence is [0,0,0,0], which appears 904 times fol-
lowed by [0,0,0,1], which appears 77 times. For posterior segments, our data has
190 unique combinations, out of which only 30 appear more than 10 times. Once
again, [0,0,0,0] is the most frequent combination and appears 786 (41%) times.

4.2 Pre-processing
To obtain the ROI i.e., the area around the lower lumbar vertebrae, we follow the
pre-processing guidelines of Reid et al. [15] and crop 50% from the top, 40% from
the left and 10% from the right side of each scan. Then the cropped images are
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PPPPPPPSegment
Score 0 1 2 3

Anterior 5390 1255 518 501
Posterior 5098 1251 685 630

Table 1. Distribution of calcification scores for the anterior and posterior segments.
Note the skewed distribution of score ‘0’.

resized to 900 x 300 pixels using the nearest neighbor interpolation, and re-scaled
to values between 0 and 1. We augment the dataset by applying various affine
transformations to the images, such as translation [+20, -20], scaling [+20, -20],
shear [0.01◦, 0.05◦] and rotation [+10◦,-10◦ ]. We used the TorchVision library
for data augmentation and the PyTorch Machine Learning Library for model
training and evaluation.

4.3 Model and Training Parameters
We train our model Mfgs (“fgs” stands for fine-grained scoring model) with
stochastic gradient descent using the Adam optimizer [7]. The initial learning
rate and batch size were set to 1e−4 and 10 respectively. We use ResNet152v2
[5] pretrained on ImageNet as an encoding model (to extract the visual feature
maps), but do not fine-tune it on our data. For an input image size of 900 x 300,
the size of the extracted feature map is 29 x 10 x 2048. We flatten the feature
maps to 290 x 2048 and feed them individually to the two decoding networks,
which we term as Decoderant, and Decoderpost.

The two decoders, are trained independently with sequences of anterior and
posterior segment ground truth scores, respectively. Furthermore, after training
is complete, the output scores of both decoders (for a given test image) are
summed to get a single score corresponding to each lumbar vertebrae. Finally,
the scores of L1 -L4 are summed to obtain the AAC-24 scores. Both decoding
pipelines are comprised of an LSTM, with a hidden size of 512, and based on
an attention module, where the output sequence length is 4. We perform 10-fold
stratified cross validation (where the data is split based on the distribution of
AAC-24 scores, such that this distribution is maintained across all splits). In
each fold 1,724 examples are used to train the network and 192 for validation.
We perform early stopping based on the average Pearson correlation between
the predicted and ground truth segment scores. We also use dropout (first after
the hidden layer of LSTM (alpha=0.5), then another (alpha= 0.4) before the
last FC layer) as a regularization strategy [20]. Our trained network and scripts
are publicly available [1].

4.4 Evaluation
To the best of our knowledge, this is the first paper that predicts fine-grained
AAC-24 scores for each vertebrae; instead of a single score for L1-L4 lumbar
regions. Therefore, to compare our results with the state-of-the-art we use the
sum of all individual granular scores. Since Reid et al. [15] have analysed the
same dataset as ours, we implement their pipeline (albeit with minor modifi-
cations) to compare with our results. Following [15], we train a baseline CNN
with Resnet152v2 as its encoder. The decoder consists of a global pooling layer,
followed by a dense layer with Relu activation, and another dense layer with a
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Low (n = 829) Moderate (n = 445) High (n = 642) Mean
Mbase Mfgs Mbase Mfgs Mbase Mfgs Mbase Mfgs

Accuracy 71.14 82.52 62.06 75.52 79.12 87.89 70.77 81.98
Sensitivity 55.49 86.37 59.33 37.53 54.83 80.22 56.55 68.04
Specificity 83.07 79.58 62.88 87.02 91.37 91.76 79.11 86.12
NPV 70.99 88.45 83.63 82.16 80.06 90.20 78.23 86.93
PPV 71.43 76.33 32.59 46.65 76.19 83.06 60.07 68.68

Table 2. Performance comparison of our model with the baseline [15] (NPV is Negative
Predictive Value and PPV is Positive Predictive Value) in one-vs-rest setting using the
cumulative AAC-24 predicted scores.

linear activation, the same as in [15]. The generated AAC-24 scores are classified
into three risk levels, based on the thresholds discussed in Section 2. Note that,
for fairness and transparency, we do not report results directly from [15] as we
could not obtain their train/validation split and they did not perform ten-fold
cross validation. The baseline model Mbase follows the same stratified cross val-
idation strategy as our proposed Mfgs model. As stated (see Section 4.3 and
Figure 2), our model has two decoders, for anterior and posterior segments of
the lumbar regions L1-L4. It would be natural to ask whether predicting AAC
scores in two segments is better than predicting them horizontally across each
lumbar region e.g. L1 or L2. To ascertain this, we train a variant of our model
(call it M∗

fgs) with a single decoder to predict a sequence of scores for each
lumbar vertebra, L1-L4, where the score for L1, would be the sum of L1ant and
L1post. We report our results in the following section.
4.5 Results and Discussion
Table 2 reports one-vs-rest performance of our model Mfgs compared to the base-
line Mbase [15] after 10-fold cross validation. Our average classification accuracy
81.98± 2.5% is significantly better than the base line accuracy of 70.77± 3.2%.
Similarly, our average 3-class classification accuracy is 72.8± 2.9% while that of
the baseline is 55.8± 3.2%. Note that our AAC-24 scores are obtained by sum-
ming up the individual fine-grained scores. Our model predicts AAC-24 scores
more accurately compared to the baseline model [15].

To assess the efficacy of our model at a more granular level, we compare the
predicted scores with fine-grained ground truth scores. The scatter plots and
confusion matrix are shown in Figure 3. Since the baseline model [15] does not

Fig. 3. Scatter plots and confusion matrix of fine-grained ground truth scores vs pre-
dicted scores for our proposed model Mfgs and ground truth vs the baseline Mbase [15]
overall AAC-24 score per scan.
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L1 L2 L3 L4
M∗

fgs Mfgs M∗
fgs Mfgs M∗

fgs Mfgs M∗
fgs Mfgs

Pearson Correlation ↑ 0.40 0.49 0.56 0.64 0.56 0.70 0.64 0.69
Kendall Correlation ↑ 0.34 0.44 0.49 0.56 0.47 0.60 0.54 0.58
Mean Absolute Error ↓ 0.96 0.60 0.73 0.67 1.20 0.88 1.13 1.10

Table 3. Correlation and error metrics between the ground truth and predicted scores
for each lumbar segment. Note that p << 0.001 for both correlation metrics.

have the capability to perform fine-grained scoring, we compare its output of a
single AAC-24 score (for all lumbar regions) with the corresponding ground truth
scores. Note that our model is very good at classifying low and high risk patients.
The figure provides evidence that fine-grained scoring results in significantly
(p«0.01) better prediction and higher correlation with human-scores.

Fig. 4. Our qualitative results show the attention maps generated by our decoding
pipeline by combining the weights of Decoderant and Decoderpost for simplicity.

Table 3 shows the comparison between predicting AAC scores horizontally
across each vertebrae vs predicting the scores vertically for each segment (an-
terior and posterior), i.e. comparison between M∗

fgs and Mfgs. It makes sense
that the two decoders in our model Mfgs ‘attend’ to the two vertical segments
and perform better than a model that looks at each vertebrae horizontally. Thus
the correlation between human annotated scores of those predicted by Mfgs is
significantly better (p<0.01) than the correlation produced by our variant M∗

fgs.
Figure 4 shows some examples where our model succeeds (a-b) or fails (c-

d). The four sub-figures in each section are from four different time stamps
of our sequential attention model. The model “sees” a particular vertebrae at
a given time stamp, “attends” to it and “detects” the amount of calcification.
It then moves on to the next vertebrae in the sequence. Figure 4(a-b) show
how the model attends to each vertebrae and correctly scores the calcification.
Figure 4(c) shows failure cases where the model over-estimates the score of L3
while (d) portrays a case where it totally fails to identify the heavy calcification.
However, Figure 4(d) is very interesting as the aorta in the DXA scan produced
by the GE iDXA machine is masked for radiation dose reduction. The human
experts have not scored L2 and L3 anterior sections of this scan because they
are not visible. Our model is unable to “see” the aorta and hence outputs a zero
score. (This is good because a higher predicted score would have meant that the
model is not paying attention to the aorta in the score generation process).
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5 Conclusion
This is the first work to adapt sequential attention-based models from vision-
language domain to address the challenge of fine-grained AAC-24 scoring. This
preliminary study on a dataset of 1,916 low resolution DXA scans, not only over-
comes the bottlenecks of domain adaptation, but also provides evidence that se-
quential “fine-grained” scoring yields higher agreement (correlation) with expert
human annotated scores. Furthermore, it highlights the necessity of developing
larger LFA DXA scan datasets with granular ground truth scores to validate this
technique in large population based studies.
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