Skip to main content

DeepCRC: Colorectum and Colorectal Cancer Segmentation in CT Scans via Deep Colorectal Coordinate Transform

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

We propose DeepCRC, a topology-aware deep learning-based approach for automated colorectum and colorectal cancer (CRC) segmentation in routine abdominal CT scans. Compared with MRI and CT Colonography, regular CT has a broader application but is more challenging. Standard segmentation algorithms often induce discontinued colon prediction, leading to inaccurate or completely failed CRC segmentation. To tackle this issue, we establish a new 1D colorectal coordinate system that encodes the position information along the colorectal elongated topology. In addition to the regular segmentation task, we propose an auxiliary regression task that directly predicts the colorectal coordinate for each voxel. This task integrates the global topological information into the network embedding and thus improves the continuity of the colorectum and the accuracy of the tumor segmentation. To enhance the model’s architectural ability of modeling global context, we add self-attention layers to the model backbone, and found it complementary to the proposed algorithm. We validate our approach on a cross-validation of 107 cases and outperform nnUNet by an absolute margin of 1.3% in colorectum segmentation and 8.3% in CRC segmentation. Notably, we achieve comparable tumor segmentation performance with the human inter-observer (DSC: 0.646 vs. 0.639), indicating that our method has similar reproducibility as a human observer.

L. Yao and Y. Xia—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Medical Segmentation Decathlon, Challenge Leaderboard. https://decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/

  2. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  3. Argilés, G., et al.: Localised colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31(10), 1291–1305 (2020)

    Article  Google Scholar 

  4. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ICLR (2021)

    Google Scholar 

  5. Huang, Y.J., et al.: 3-D Roi-aware U-net for accurate and efficient colorectal tumor segmentation. IEEE Trans. Cybern. 51(11), 5397–5408 (2020)

    Article  Google Scholar 

  6. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  7. Jian, J., et al.: Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas. Phys. Eng. Sci. Med. 41(2), 393–401 (2018). https://doi.org/10.1007/s13246-018-0636-9

    Article  Google Scholar 

  8. Jiang, Y., et al.: ALA-Net: adaptive lesion-aware attention network for 3D colorectal tumor segmentation. IEEE Trans. Med. Imaging 40(12), 3627–3640 (2021)

    Article  Google Scholar 

  9. Jin, D., Iyer, K.S., Chen, C., Hoffman, E.A., Saha, P.K.: A robust and efficient curve skeletonization algorithm for tree-like objects using minimum cost paths. Pattern Recogn. Lett. 76, 32–40 (2016)

    Article  Google Scholar 

  10. Liu, X., et al.: Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Med. Phys. 46(8), 3532–3542 (2019)

    Article  Google Scholar 

  11. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  12. Ni, T., Xie, L., Zheng, H., Fishman, E.K., Yuille, A.L.: Elastic boundary projection for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2109–2118 (2019)

    Google Scholar 

  13. Pei, Y., Mu, L., Fu, Y., He, K., Li, H., Guo, S., Liu, X., Li, M., Zhang, H., Li, X.: Colorectal tumor segmentation of CT scans based on a convolutional neural network with an attention mechanism. IEEE Access 8, 64131–64138 (2020)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Soomro, M.H., et al.: Automated segmentation of colorectal tumor in 3D MRI using 3D multiscale densely connected convolutional neural network. J. Healthc. Eng. 2019 (2019)

    Google Scholar 

  16. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  17. Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. arXiv preprint arXiv:2111.14791 (2021)

  18. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  19. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  20. Wang, Y., et al.: Deep distance transform for tubular structure segmentation in CT scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3833–3842 (2020)

    Google Scholar 

  21. Wolf, A.M., et al.: Colorectal cancer screening for average-risk adults: 2018 guideline update from the American cancer society. CA Cancer J. Clin. 68(4), 250–281 (2018)

    Article  Google Scholar 

  22. Yao, J., Cai, J., Yang, D., Xu, D., Huang, J.: Integrating 3D geometry of organ for improving medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 318–326. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_36

    Chapter  Google Scholar 

  23. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  24. Zheng, S., et al.: MDCC-Net: multiscale double-channel convolution U-Net framework for colorectal tumor segmentation. Comput. Biol. Med. 130, 104183 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China [grant number 2021YFF1201003], the National Science Fund for Distinguished Young Scholars [grant number 81925023], the National Natural Scientific Foundation of China [grant number 82072090].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingda Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, L. et al. (2022). DeepCRC: Colorectum and Colorectal Cancer Segmentation in CT Scans via Deep Colorectal Coordinate Transform. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics