Skip to main content

LIDP: A Lung Image Dataset with Pathological Information for Lung Cancer Screening

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Lung cancer has been one of the greatest lethal cancers worldwide. Computed Tomograph (CT) makes it possible to diagnose lung cancer at an early stage, which can significantly reduce its mortality. In recent years, deep neural networks (DNN) have been widely used to improve the accuracy of benign and malignant pulmonary nodules classification. But the limitation of DNN approach is that AI model’s performance and generalization highly depend on the size and quality of the training data. With our best knowledge, almost all existing public lung nodule datasets, e.g., LIDC-IDRI, obtain the crucial benign and malignant labels by radiographic analysis, instead of pathological examination. In this paper, we argue that, without pathology report and hence lack of labels’ authenticity, LIDC-IDRI based machine-learning (ML) models are short of generalization. To prove our hypothesis, we introduce a new lung CT image dataset with pathological information (LIDP), for lung cancer screening. LIDP contains 990 samples, including 783 malignant samples and 207 benign samples. More critically, the labels of all samples have been all examined by pathological biopsy. We evaluate various of existing LIDC-based state-of-the-art (SOTA) models on LIDP. Our experimental results show the extreme poor generalization ability of existing SOTA models that are trained on LIDC-IDRI dataset. Our scientific conclusion is striking: the distributions of these datasets are significantly different. We claim that the LIDP dataset is a very valuable addition to the existing datasets like LIDC-IDRI. LIDP can be well used for independent testing or for training new ML models for lung cancer early detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ncrc.gyfyy.com/index.php?ac=article &at=read &did=509.

References

  1. Al-Shabi, M., Lan, B.L., Chan, W.Y., Ng, K.H., Tan, M.: Lung nodule classification using deep local-global networks. Int. J. Comput. Assist. Radiol. Surg. 10, 1815–1819 (2019)

    Article  Google Scholar 

  2. Al-Shabi, M., Lee, H.K., Tan, M.: Gated-dilated networks for lung nodule classification in CT scans. IEEE Access 7, 178827–178838 (2019)

    Article  Google Scholar 

  3. Ali, I., Muzammil, M., Haq, I.U., Khaliq, A.A., Abdullah, S.: Efficient lung nodule classification using transferable texture convolutional neural network. IEEE Access 8, 175859–175870 (2020)

    Article  Google Scholar 

  4. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 2, 915–931 (2011)

    Article  Google Scholar 

  5. Del Ciello, A., Franchi, P., Contegiacomo, A., Cicchetti, G., Bonomo, L., Larici, A.R.: Missed lung cancer: when, where, and why? Diagn. Intervent. Radiol. 23(2), 118 (2017)

    Article  Google Scholar 

  6. Dey, R., Lu, Z., Hong, Y.: Diagnostic classification of lung nodules using 3D neural networks. In: 2018 IEEE 15th International Symposium on Biomedical Imaging, pp. 774–778 (2018)

    Google Scholar 

  7. Hussein, S., Cao, K., Song, Q., Bagci, U.: Risk stratification of lung nodules using 3D CNN-based multi-task learning. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_20

    Chapter  Google Scholar 

  8. Jiang, H., Shen, F., Gao, F., Han, W.: Learning efficient, explainable and discriminative representations for pulmonary nodules classification. Pattern Recogn. 107825 (2021)

    Google Scholar 

  9. Kirby, J.S., et al.: LUNGx challenge for computerized lung nodule classification. J. Med. Imaging (4), 044506 (2016)

    Google Scholar 

  10. Kuang, Y., Lan, T., Peng, X., Selasi, G.E., Liu, Q., Zhang, J.: Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification. IEEE Access 8, 77725–77734 (2020)

    Article  Google Scholar 

  11. Lei, Y., Tian, Y., Shan, H., Zhang, J., Wang, G., Kalra, M.K.: Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping. Med. Image Anal. 101628 (2020)

    Google Scholar 

  12. Liao, F., Liang, M., Li, Z., Hu, X., Song, S.: Evaluate the malignancy of pulmonary nodules using the 3-D deep leaky noisy-or network. IEEE Trans. Neural Netw. Learn. Syst. 11, 3484–3495 (2019)

    Article  Google Scholar 

  13. Liu, Y., Hao, P., Zhang, P., Xu, X., Wu, J., Chen, W.: Dense convolutional binary-tree networks for lung nodule classification. IEEE Access 6, 49080–49088 (2018)

    Article  Google Scholar 

  14. Rorke, L.B.: Pathologic diagnosis as the gold standard (1997)

    Google Scholar 

  15. Shan, H., Wang, G., Kalra, M.K., de Souza, R., Zhang, J.: Enhancing transferability of features from pretrained deep neural networks for lung nodule classification. In: Proceedings of the 2017 International Conference on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (2017)

    Google Scholar 

  16. Shen, W., et al.: Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn. 61, 663–673 (2017)

    Article  Google Scholar 

  17. Sung, H., et al.: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  18. National Lung Screening Trial Research Team: Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 635(5), 395–409 (2011)

    Google Scholar 

  19. Wu, G.X., Raz, D.J.: Lung cancer screening. Lung Cancer 1–23 (2016)

    Google Scholar 

  20. Xie, Y., Xia, Y., Zhang, J., Feng, D.D., Fulham, M., Cai, W.: Transferable multi-model ensemble for benign-malignant lung nodule classification on chest CT. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 656–664. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_75

    Chapter  Google Scholar 

  21. Xie, Y., et al.: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Trans. Med. Imaging 4, 991–1004 (2018)

    Google Scholar 

  22. Xie, Y., Zhang, J., Xia, Y.: Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med. Image Anal. 57, 237–248 (2019)

    Article  Google Scholar 

  23. Xie, Y., Zhang, J., Xia, Y., Fulham, M., Zhang, Y.: Fusing texture, shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT. Inf. Fusion 42, 102–110 (2018)

    Article  Google Scholar 

  24. Yang, J., Fang, R., Ni, B., Li, Y., Xu, Y., Li, L.: Probabilistic radiomics: ambiguous diagnosis with controllable shape analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 658–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_73

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Airu Yin or Hua Ji .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 310 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, Y. et al. (2022). LIDP: A Lung Image Dataset with Pathological Information for Lung Cancer Screening. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13433. Springer, Cham. https://doi.org/10.1007/978-3-031-16437-8_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16437-8_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16436-1

  • Online ISBN: 978-3-031-16437-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics