Skip to main content

Efficient Biomedical Instance Segmentation via Knowledge Distillation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13434))

Abstract

Biomedical instance segmentation is vulnerable to complicated instance morphology, resulting in over-merge and over-segmentation. Recent advanced methods apply convolutional neural networks to predict pixel embeddings to overcome this problem. However, these methods suffer from heavy computational burdens and massive storage. In this paper, we present the first knowledge distillation method tailored for biomedical instance segmentation to transfer the knowledge from a cumbersome teacher network to a lightweight student one. Different from existing distillation methods on other tasks, we consider three kinds of essential knowledge of the instance segmentation task, i.e., instance-level features, instance relationships in the feature space and pixel-level instance boundaries. Specifically, we devise two distillation schemes: (i) instance graph distillation that transfers the knowledge of instance-level features and instance relationships by the instance graphs built from embeddings of the teacher-student pair, respectively, and (ii) pixel affinity distillation that converts pixel embeddings into pixel affinities and explicitly transfers the structured knowledge of instance boundaries encoded in affinities. Experimental results on a 3D electron microscopy dataset (CREMI) and a 2D plant phenotype dataset (CVPPP) demonstrate that the student models trained through our distillation method use fewer than 1% parameters and less than 10% inference time while achieving promising performance compared with corresponding teacher models. Code is available at https://github.com/liuxy1103/BISKD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anas, E.M.A., et al.: Clinical target-volume delineation in prostate brachytherapy using residual neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 365–373. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_42

    Chapter  Google Scholar 

  2. Avelar, P.H., Tavares, A.R., da Silveira, T.L., Jung, C.R., Lamb, L.C.: Superpixel image classification with graph attention networks. In: 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 203–209. IEEE (2020)

    Google Scholar 

  3. Beier, T., et al.: Multicut brings automated neurite segmentation closer to human performance. Nat. Methods 14(2), 101–102 (2017)

    Article  Google Scholar 

  4. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  5. Chen, L., Strauch, M., Merhof, D.: Instance segmentation of biomedical images with an object-aware embedding learned with local constraints. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 451–459. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_50

    Chapter  Google Scholar 

  6. Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008–5017 (2021)

    Google Scholar 

  7. CREMI: Miccal challenge on circuit reconstruction from electron microscopy images (2016). https://cremi.org/

  8. Dong, M., et al.: Instance segmentation from volumetric biomedical images without voxel-wise labeling. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 83–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_10

    Chapter  Google Scholar 

  9. Funke, J., et al.: Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1669–1680 (2018)

    Article  Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  11. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2(7) (2015)

  12. Hu, B., Zhou, S., Xiong, Z., Wu, F.: Cross-resolution distillation for efficient 3D medical image registration. IEEE Trans. Circuits Syst. Video Technol. (2022)

    Google Scholar 

  13. Huang, W., et al.: Semi-supervised neuron segmentation via reinforced consistency learning. IEEE Trans. Med. Imaging (2022)

    Google Scholar 

  14. Huang, W., Deng, S., Chen, C., Fu, X., Xiong, Z.: Learning to model pixel-embedded affinity for homogeneous instance segmentation. In: Proceedings of AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  15. Ke, T.W., Hwang, J.J., Liu, Z., Yu, S.X.: Adaptive affinity fields for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 587–602 (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kulikov, V., Lempitsky, V.: Instance segmentation of biological images using harmonic embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3843–3851 (2020)

    Google Scholar 

  18. Lee, K., Lu, R., Luther, K., Seung, H.S.: Learning and segmenting dense voxel embeddings for 3D neuron reconstruction. IEEE Trans. Med. Imaging 40(12), 3801–3811 (2021)

    Article  Google Scholar 

  19. Li, M., Chen, C., Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Advanced deep networks for 3D mitochondria instance segmentation. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  20. Liu, X., Huang, W., Zhang, Y., Xiong, Z.: Biological instance segmentation with a superpixel-guided graph. In: IJCAI (2022)

    Google Scholar 

  21. Liu, X., et al.: Learning neuron stitching for connectomics. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 435–444. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_42

    Chapter  Google Scholar 

  22. Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_14

    Chapter  Google Scholar 

  23. Minervini, M., Fischbach, A., Scharr, H., Tsaftaris, S.A.: Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recogn. Lett. 81, 80–89 (2016)

    Article  Google Scholar 

  24. Payer, C., Štern, D., Neff, T., Bischof, H., Urschler, M.: Instance segmentation and tracking with cosine embeddings and recurrent hourglass networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_1

    Chapter  Google Scholar 

  25. Qin, D., et al.: Efficient medical image segmentation based on knowledge distillation. IEEE Trans. Med. Imaging 40(12), 3820–3831 (2021)

    Article  Google Scholar 

  26. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  27. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: Fitnets: hints for thin deep nets. arXiv preprint arXiv:1412.6550 (2014)

  28. Scharr, H., Minervini, M., Fischbach, A., Tsaftaris, S.A.: Annotated image datasets of rosette plants. In: ECCV (2014)

    Google Scholar 

  29. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1365–1374 (2019)

    Google Scholar 

  30. Wolf, S., et al.: The mutex watershed and its objective: efficient, parameter-free graph partitioning. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  31. Xiao, Z., Fu, X., Huang, J., Cheng, Z., Xiong, Z.: Space-time distillation for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2113–2122 (2021)

    Google Scholar 

  32. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928 (2016)

Download references

Acknowledgement

This work was supported in part by the National Key R &D Program of China under Grant 2017YFA0700800, the National Natural Science Foundation of China under Grant 62021001, the University Synergy Innovation Program of Anhui Province No. GXXT-2019-025, and Anhui Provincial Natural Science Foundation under grant No. 1908085QF256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueyi Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1383 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Hu, B., Huang, W., Zhang, Y., Xiong, Z. (2022). Efficient Biomedical Instance Segmentation via Knowledge Distillation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics