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Abstract. Thyroid nodule classification aims at determining whether
the nodule is benign or malignant based on a given ultrasound image.
However, the label obtained by the cytological biopsy which is the golden
standard in clinical medicine is not always consistent with the ultrasound
imaging TI-RADS criteria. The information difference between the two
causes the existing deep learning-based classification methods to be in-
decisive. To solve the Inconsistent Label problem, we propose an Adap-
tive Curriculum Learning (ACL) framework, which adaptively discovers
and discards the samples with inconsistent labels. Specifically, ACL takes
both hard sample and model certainty into account, and could accurately
determine the threshold to distinguish the samples with Inconsistent La-
bel. Moreover, we contribute TNCD: a Thyroid Nodule Classification
Dataset to facilitate future related research on the thyroid nodules. Ex-
tensive experimental results on TNCD based on three different backbone
networks not only demonstrate the superiority of our method but also
prove that the less-is-more principle which strategically discards the sam-
ples with Inconsistent Label could yield performance gains. Source code
and data are available at https://github.com/chenghui-666/ACL/.

Keywords: Thyroid nodule - Adaptive curriculum learning - Ultra-
sound imaging - Image classification.

1 Introduction

Thyroid nodule is a common clinical disease with an incidence of 19%-68% in the
population, where about 5%-15% of them are malignant . Ultrasonic image-
based diagnosis is the most widely used technique to determine whether the
thyroid nodule is benign or malignant because of its low cost, efficiency, and
sensitivity. However, unlike standardized CT & MRI images, ultrasonic images
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are taken at variant positions from different angles. Meanwhile, ultrasonic im-
ages are susceptible to noise due to their low contrast, which is challenging for
inexperienced radiologists to perform diagnoses [5]. Thus, it is valuable to design
an accurate computer-aided diagnosis (CAD) system to reduce the performance
gap between inexperienced radiologists and experienced ones.

To provide guidance for the diagnosis of thyroid nodule, Tessler et al. |[15] have
proposed the Thyroid Imaging Reporting And Data System (TI-RADS) which
describes five groups of appearance feature-based diagnostic criteria to conduct
qualitative analyses for thyroid nodules. Nevertheless, in clinical medicine, the
fine needle aspiration (FNA) [12] based cytological biopsy is the golden standard
for the diagnosis of the thyroid nodule. In fact, the results of the diagnostic anal-
ysis guided by TI-RADS are not necessarily consistent with the judgment based
on the golden rule of pathology. TI-RADS, as a diagnostic manual based on the
empirical summary, judges the nature of nodules through image features, which
means that benign nodules are bound to have some characteristics of malig-
nancy, and malignant nodules must also contain benign morphological features.
In terms of probability, the label itself inevitably has uncertainty.

Therefore, the label obtained by the cytological biopsy is not always consis-
tent with that from TI-RADS, and this causes an Inconsistent Label problem:
the samples with inconsistent labels tend to be harder for the model to fit, which
leads to the complexity of the decision plane and harms the generalization of
the model. Based on the above concerns, we propose an adaptive curriculum
learning framework to resolve these issues. The contribution of this work can be
summarized as follow: (1) We propose a curriculum learning-based algorithm to
resolve the inconsistent label problem. Specifically, it works by adaptively dis-
covering and discarding the hard samples; (2) We contribute TNCD: a bench-
mark for the thyroid nodule classification task, to further encourage the research
development of thyroid nodule diagnosis. (3) Extensive experiments compared
with other state-of-the-art methods have demonstrated the effectiveness of our
method, and proving the less-is-more proverbial that end-to-end learning with
fewer samples could achieve better performance.

2 Related Work

Thyroid Nodule Diagnosis Deep neural networks (DNN) have shown their
dominance in the field of image representation learning. Based on DNN, Wang et
al. [16] proposed an attention-based network that aggregates the extracted fea-
tures from multiple ultrasound images. Song et al. |[14] proposed a hybrid feature
cropping network to extract discriminative features for better performance on
classification, and this network reduces the negative impacts of local similarities
between benign and malignant nodules. Zhao et al. [19] proposed a local and
global feature disentangled network to segment and classify the thyroid nodules.
To make the automatic diagnosis more accurate and consistent with human cog-
nition, several works [1,/9,/18] were proposed to integrate domain knowledge for
thyroid nodule diagnosis, such as boundary feature, aspect ratio, echo pattern,
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Fig. 1. Overview of the proposed adaptive curriculum learning framework. The orange
part shows the training pipeline on a mini-batch. The hard sample estimation queue is
shown in blue blocks, while the certainty estimation module is shown in green blocks.

orientation, etc. However, all the previous works ignore the Inconsistent Label
issue. To address this issue, we proposed a curriculum learning-based algorithm
to discard the samples adaptively during the neural network training stage.

Curriculum Learning Curriculum learning [2] is a training strategy that
makes models to gradually learn from easy to hard. Many works adopt cur-
riculum learning to improve the generalization or convergence speed of models
in the domain of computer vision or natural language processing . Re-
cently, curriculum learning-based approaches have been used to overcome
the inherent hardness of learning from hard samples, as it automatically de-
creases the weight of samples based on their difficulty. Lyu et al. proposed
to adaptively select samples with a tighter upper bound loss against label cor-
ruption. Castells et al. [3] designed SuperLoss that mathematically decreases the
contribution of samples with a large loss. Liu et al. proposed a co-correcting
framework to relabel the images with dual-network curriculum learning. How-
ever, all the above-mentioned methods neither rely on the hard-craft schedule
nor ignore the samples with inconsistent labels. Thus, we develop an adaptive
curriculum learning paradigm to adaptively discover and discard these samples.

3 Methodology

We propose an adaptive curriculum learning (ACL) framework for thyroid nodule
diagnosis, which is shown in Fig[l] ACL is mainly composed of two parts: a
curriculum learning-based sample scheduler and a model certainty estimating
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function. The idea underlying ACL is to mitigate the Inconsistent Label problem
by adaptively discovering and discarding the detrimental samples, thus forcing
the model to adaptively learn from easy samples to hard samples.

3.1 Hard Sample Discovery with Confidence Queue

The core idea of curriculum learning is to gradually excavate hard samples and
adjust their weights adaptively in the process of model training. Therefore, we
need to design a function to discriminate the hardness of a sample. Consider-
ing that the samples with inconsistent labels tend to be misjudged with high
confidence, we first define the set P. that contains the sample’s confidence ¢; as:

PC: {CQ,...,C@} (1)
where ¢; = P(x;|y;). x; and y; denote the predicted probability (after Softmax
function) and its corresponding label, respectively. ¢ is the index of the sample.
¢; ranges from 0 to 1. When ¢; < 0.5 the model makes incorrect prediction. Thus,
the set H of hard samples in current mini-batch ¢, is defined as:

H = {c; € P:|I(y; # y;)} (2)

where y; is the predicted label. I(-) is an indicator function that returns true
when condition meets, which means the correctly classified i** sample will not
enter the hard sample queue. Therefore, the hard sample set H will be fed into
the queue to calculate the threshold, which is used to distinguish the samples
with the inconsistent label.

To find the hard samples more accurately, we propose the adaptive threshold-
ing function T,4,. The tailor-designed 7,4, can adaptively constrain the model
to better learn the easy samples in the early stage, and gradually learn the
hard samples in the later stage. As a dynamic threshold, 7,4, should be able
to (1) update in time; (2) estimate with sufficient samples. Thus, we design a
hard sample confidence queue Q) with fixed length L to store the confidence
of misclassified samples across batches. This queue is updated every batch by
following the first in first out (FIFO) rule, which means we first dequeue the
oldest k elements in @), then send the set H into Qj,. Let the queue before
updating be Q7" “{c1, ..., ¢} where the subscripts denote the previous position of
the elements, this process is formulated as:

{Cl,...,cl,...,cl+k}, l SL—I{
Qh = {Cl+k7La -+ Cly '~-7cl+k}}7 L-k<I<L ) (3)
{ck,...,cl,...,ch}, =1L

where L and [ denotes the fixed length and previous length of the queue, respec-
tively. The number of misclassified sample is represented by k. Let u and o be
the average value and standard deviation of elements in @y, the formulation of
Tda is defined as:

Toga=p+a-o (4)

where « is a hyper-parameter to trade-off the numbers of the hard samples.
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3.2 Model Certainty Estimation with Certainty Queue

Considering that the T,4, did not take the model’s certainty into concern, which
will lead to the inaccurate estimation of T,4,, we propose to embedded the
model’s certainty into the T,4, by replacing the hyper-parameter oo with a self-
configured & certainty-aware variable 6. The idea underlying this modifica-
tion is to use the model’s certainty to constrain the standard deviation of difficult
sample queues to better estimate difficult samples. As the model certainty can
be reflected by the model’s prediction, we define the sample certainty ¢; as:

¢ = max(x;) (5)

where z; is the model’s prediction after Softmax function. The value of the
sample ¢; ranges from (0.5, 1). The larger value is, the more certain the model
is. After that, we follow the idea of a hard sample queue in Section 3.1 and
propose a certainty queue (). to estimate the model’s certainty. The difference
between Q. and @, is that Q. uses all the samples in the current mini-batch for
updating, while @} only updates the queue with the misclassified samples. Since
queue length L is set equal to the length of @5, which is a multiple of batch-size
B, letting the queue before updating be Q27¢{éy, ..., ¢}, this process could be
formulated as:

0. {{él,...,él,...,é%}, I<L-B ©)

{¢p,..ét,nbipp}, 1=1L

Thus 6 is calculated by averaging the elements in queue Q. with = % Zle Q5
Intuitively, the 8 should gradually change from 0.5 to 1 as the model’s iteration.
In the early stage of training, the model is uncertain about the samples, we should
discard fewer samples to force the model to learn more imaging features. In the
late stage of training, the model is sure about the samples. Thus, we strategically
multiply € and standard deviation o to embed the model certainty into hard
sample selection, forcing the Ty 4, to better distinguish the hard samples. Thus,
Equation. 4 is re-written as:

Tada:u—’_e'a (7)
The overall pseudo code to update the Ty 4, is shown in Algorithm

3.3 Loss Function of Adaptive Curriculum Learning

With the T,4, and the confidence ¢; defined in Equation. 1, the curriculum
learning process can be described by adjusting the loss [; of ¢-th sample. Let CE
be the cross-entropy loss, following the ”less is more” proverb, this process is
defined as:

E ; 7 7 > Ta a
Zi — {C (y17y1)7 C; =2 d (8)

0, ¢ < Tada ’
Finally, let B be the batch size, the overall loss L is defined as:

B
L=> 1. 9)
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Algorithm 1 Updating T4, in b*" batch

Require: B € N, the batch size
X € RBX2, the prediction all samples in b** batch
Y € {0, 1}B7 the labels of all samples in b*" batch
Qn € (0,0.5)", the hard sample queue updated after (b — 1)** batch
Q. € (0.5,1)", the certainty queue updated after (b — 1)** batch
Ensure: The updated T,4q

P = softmaz(X) > The predicted possibility P € RE*2
Y’ = argmaz(P[:]) > The predicted label Y’ € {0,1}7
for i in range(0,B) do
C = max(P) > The set of certainties.
dequeue(Qc, len(C)) > Dequeue the earliest len(C') elements
enqueue(Qe, C) > Enqueue the probability of the predicted label
if Y'[i] # Y[i] then
H={P, € P|Y'[i] # Y[i]} > The set of difficulty.
dequeue(Qn,len(H)) > Dequeue the earliest element
enqueue(Qn, H) > Enqueue the confidence of misclassified sample
end if
end for
0 = mean(Q.) > Estimate the model certainty
p = mean(Qn)
o= Std(Qh)
Todga =p+0-0 > Update Tuaq with queue C' and model certainty

return 7,4,

4 TNCD: Benchmark for Thyroid Nodule Classification

To facilitate future research in thyroid nodule diagnosis, we contribute a new
Thyroid Nodule Classification Dataset called TNCD, which contains 3493 ul-
trasound images taken from 2421 patients. According to the results of nodular
cytological biopsies, each image is labeled as benign or malignant according to
its pathological biopsy result. To verify the performance of the algorithms, the
TNCD dataset is divided into the training set and test set by ensuring the im-
ages from the same patient only appear in a certain subset. The training set
contains 2879 images with 1905 benign and 974 malignant images, while the
test set contains 614 images with 378 benign and 236 malignant images.

5 Experiment

5.1 Implementation and Evaluation Metric

The framework is implemented in PyTorch 1.11. All models are trained with
NVIDIA 3090 GPU with CUDA 11.3, and initialized by the ImageNet pre-
trained weights. Stochastic gradient descent is used to optimize our models at
an initial learning rate of 0.001, ‘Poly’ learning rate policy is applied, where

Ir =lripge x (1 — %)0'9. Batch size and training epoch are set to 16 and
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Fig. 2. The visualization result of the 7,4, and the model certainty 6.

50, respectively. All images are resized to 224 x 224 with horizontal flip argu-
mentation. We performed oversampling on the malignant samples to avoid the
over-fitting of the majority benign samples. It is worth noting that as the train-
ing process is not stable initially, we trained the model with the cross entropy
loss for the first three epochs, then trained the model with the proposed ACL
loss. We use accuracy, precision, recall, Fl-score and AUC as metrics.

Table 1. Ablation study of the queue length and the hyper-parameter.

Queue length L 0 (Baseline) 16 32 64
AUC 77.3141.04 79.2440.98 79.27+1.26 79.18+1.17
Hyper-parameter o 0 1 2 6(Ours)
AUC 79.27+1.26 79.66+1.13 79.4141.26 79.8940.80

5.2 Ablation Study and Schedule Analysis

All the ablation studies are conducted based on the ResNet18 backbone with
5-fold cross-validation on the AUC score. The ablation study about hard sample
queue length is shown in the first two rows of Table. [I| To balance the real-time
and accuracy of queue updates, we choose 16, 32, and 64 as the length of queue
Qr. We find the length of 32 is appropriate, which achieves the highest AUC
value. More importantly, all the AUC scores in this table significantly exceed
the baseline by about 2%, showing that discarding the samples with inconsistent
labels is useful. The ablation study about the certainty-aware queue is shown
in the last two rows of Table. [I} By replacing the hyper-parameter o with the
certainty-aware variable 6, we achieve better performance while avoiding the
laborious hyper-parameter selection.
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Moreover, we further visualize the variation tendency of the T4, and the 6
in Fig. 2] The T,4, is used to discover the hard sample and force the model to
learn from easy to hard. The model certainty 6 curve gradually increased to 1,
which validates our assumption in Section 3.2.

Table 2. Comparison with the state of the art methods.

Learning strategy Backbone Accuracy Precision Recall F1-score AUC

resnet 70.75i1453 61-71i1A64 68.05i6498 64.47i250 77.31i1,04
Cross Entropy densenet 70.36+1.21 63.924233 63.314628 63.314249 78.0540.42
convnext 72.291166 62.944062 71.1941877 66.3612.84 78.38+1.04

resnet  70.54+1.32 62.8743.62 65.854527 64.04+1.70 76.98+1.16
CL l].l] densenet 70.03:{:0‘97 6244:!:3.89 65.25:{:7‘92 63.31i2,05 77~27:I:0,77
convnext 72.14:!:174 60~21i267 75.7613.65 67.00;};170 74.37;‘:2‘71

resnet  71.2641.82 64.97411.73 64.151472 64.461267 78.5041.24
SL l3l densenet 71.8241 66 64.384+1.81 66.8615814 65.424949 78.98410.29
convnext 71~47i1453 62-66:};1.33 68.39i3446 65.36i199 77.87i1,07

resnet 73.28:&0.53 63v02:i:1.86 73.64;&1.90 67.87i0,40 79-89:|:O.89
ACL (Ours) densenet 72'92:|:1-26 60~74i3A78 77.80i4,27 67.99i0,33 79.84i0,79
convnext 72'50:|:0-69 61-19i1.68 74-75i3465 67.21:]:0,91 78.85;&0,99

5.3 Comparison with the State-of-the-arts

The comparison with the state-of-the-art methods are shown in Table. [2| These
experiments are based on three widely used neural networks (ResNetl8 [6],
DenseNet121 (7], ConvNeXt-Tiny [10]) power with the advanced curriculum
learning based loss functions (Curriculum Loss (CL) [11], SuperLoss (SL) [3])),
and the proposed ACL. As shown in this table, the proposed method signif-
icantly exceeds the baseline by 3.5% w.r.t averaging AUC score. It also out-
performs other curriculum learning-based methods (i.e., SL and CL) that not
change the backbone by more than 1% AUC score on average, showing that
properly discarding samples is quite effective.

6 Conclusion

We present an adaptive curriculum learning (ACL) framework for thyroid nodule
diagnosis to resolve the Inconsistent Label problem, which adaptively discovers
and discards the hard samples to constrain the neural network to learn from
easy to hard. The proposed ACL could be easily embedded into existing neu-
ral networks to boost performance. Moreover, we contribute TNCD, a dataset
that contains 3464 ultrasonic thyroid images with its cytological benign and ma-
lignant labels and pixel-level nodule masks. Extensive experiments have shown
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that the proposed framework outperforms state-of-the-art methods while unveil-
ing that the ”less is more” principle is practical.
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