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Abstract. Segmenting both bone surface and the corresponding acous-
tic shadow are fundamental tasks in ultrasound (US) guided orthopedic
procedures. However, these tasks are challenging due to minimal and
blurred bone surface response in US images, cross-machine discrepancy,
imaging artifacts, and low signal-to-noise ratio. Notably, bone shadows
are caused by a significant acoustic impedance mismatch between the
soft tissue and bone surfaces. To leverage this mutual information be-
tween these highly related tasks, we propose a single end-to-end network
with a shared transformer-based encoder and task independent decoders
for simultaneous bone and shadow segmentation. To share complemen-
tary features, we propose a cross task feature transfer block which learns
to transfer meaningful features from decoder of shadow segmentation to
that of bone segmentation and vice-versa. We also introduce a corre-
spondence consistency loss which makes sure that network utilizes the
inter-dependency between the bone surface and its corresponding shadow
to refine the segmentation. Validation against expert annotations shows
that the method outperforms the previous state-of-the-art for both bone
surface and shadow segmentation.

Keywords: Multi-Task - Ultrasound - Bone Segmentation - Shadow
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1 Introduction

There has been a significant interest in incorporating ultrasound (US) imaging
for computer assisted orthopedic surgery (CAOS) procedures owing to its non-
invasive, radiation-free, and cost-effective nature. However, due to bone surfaces
appearing only several millimeters (mm) in thickness along with noisy artifacts,
researchers have been focusing on developing automated bone segmentation and
enhancement methods [7]. These bone surfaces generally have the highest in-
tensity in US images which is then followed by a low-intensity region, namely
bone shadows. Bone shadow is the result of a high acoustic impedance mismatch
between the bone surface and the adjacent soft tissue, which reflects the US sig-
nal to the transducer. The bone shadow information is essential to guide the
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orthopedic surgeon to a standardized viewing plane with minimal noise and ar-
tifacts. Hence, both bone surface and shadow segmentation are crucial to CAOS
procedures.

Recent literature on bone and shadow segmentation focus on learning indi-
vidual networks for each problem separately [2IT3[3/1]. However, in [11], Wang
et al. [II] proposed a pre-enhancement network that leverages bone shadow in-
formation for bone surface segmentation. The bone shadow was obtained using
a bone shadow enhancement method where a signal transmission map is con-
structed from the local phase bone image features [6]. The enhanced bone shadow
information has also been used in [12] where a multi-task learning-based method
to segment bone shadow region is proposed.

It should be noted that bone shadow is a signal void that indicates the loss
of energy as US waves propagate through bone tissues. Thus, the quality of bone
surface segmentation can have major impact on shadow segmentation accuracy
and vice-versa. However, existing works do not fully exploit the structure of
these highly related tasks. Despite being closely-related, existing top networks
for bone and shadow segmentation have significantly different and specialized ar-
chitectures. Our proposed method explores the idea of exploiting shared features
for a more compact network and taking advantage of interactions between the
two tasks to generate a better feature representation. We hypothesize that the
interrelation between bone and shadow response in US images can be leveraged
to significantly improve the quality of both learned networks. In summary, we
present the following contributions in this paper:

— We are the first to integrate two highly-related homogeneous tasks into a
single framework for unified bone surface and shadow segmentation. The
common encoder brings powerful synergy across both tasks when extracting
shared deep features for the two tightly-coupled problems.

— We propose a cross task feature transfer block to extract complementary
features at decoders to improve the quality of performance in the multi-task
learning framework.

— We propose a task correspondence consistency loss to further regularize the
network by ensuring the transitivity between the two related predictions.

— We conduct extensive experiments using the in vivo US scans of knee, femur,
distal radius, spine, and tibia bones collected using two US machines and
demonstrate that the proposed method is competitive with other individual
specialized state-of-the-art methods.

2 Method

2.1 Preliminaries

Instead of using only B-mode US scan as input, the proposed network takes the
concatenation of three filtered images along with the original B-mode US scan
(US(z,y)). The filtered images are shown in Fig.[I{a)-(d). This has been done to
reduce the domain discrepancy between the images obtained using different US
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machine settings or different orientations of the transducer. During the extrac-
tion of filtered images we have used the original parameters and constant val-
ues described in [8J6]. The Local Phase Tensor Image (LPT(x,y)) is computed
by defining odd and even filter responses using [§]. Local Phase Bone Image
LP(x,y) is computed using: LP(x,y) = LPT(x,y) x LPE(z,y) x LwP A(z,y),
where LPE(x,y) and LwPA(z,y) represent the local phase energy and local
weighted mean phase angle image features, respectively. These two features are
computed using monogenic signal theory as [6]. Bone Shadow Enhanced image
BSE(z,y) is obtained by modeling the interaction of Ultrasound signal at posi-
tion (x,y) within the tissues as scattering and attenuation information using the
method proposed in [6],
BSE(z,y) = [(CMLp(w,y) - p)/Imaz(USa(z,y), )] + p

Here the confidence map is denoted by C My, p(x,y) which is obtained by model-
ing the US signal propagation inside the tissue considering bone feature in local
phase bone image LP(x, y). US4 (x,y) maximizes the visibility of bone features
with high intensity inside a local region. d represents the tissue attenuation co-
efficient. p is related to echogenicity confining the bone surface and € is a small
constant to avoid division by zero.

(a) (b) (©) (d) (e) ()

Fig. 1. (a) B-mode US scan (b) LPT (c) LP (d) BSE (e)Bone Surface Segmentation
and (f) Bone Shadow Segmentation.

2.2 Network Architecture

We propose Shadow and Surface Segmentation Network (SSNet) for simultane-
ous bone surface and shadow segmentation from US images which is illustrated in
Figure|2] SSNet is composed of a shared LeViT-based encoder to extract global
and long-range spatial features and two CNN-based decoders with a cross task
feature transfer block to leverage mutual information between the two tasks.
(i) LeViT-based Shared Encoder: The shared encoder for bone and shadow
surface segmentation is built based on the LeViT architecture [5]. The encoder
part consists of four 3 x 3 convolution layers with stride 2 initially followed by
three transformer blocks. Features from the convolution layers are forwarded
to the LeViT transformer blocks which require fewer floating-point operations
(FLOPs) than ViTs [4]. The local and global features at different scales are
exploited by concatenating the features from both transformer and convolution
layers.

(ii) CNN-based Decoders: The decoder part of the network consists of two
separate branches for bone surface and shadow segmentation. Inspired by UNet
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[10], the features from decoders are concatenated with skip connection to effec-
tively reuse spatial information of feature maps. The resolution from the previous
layers is recovered using the cascaded upsampling technique similar to UNet. The
decoder blocks consist of a 3 x 3 convolution, batch normalization layer followed
by a ReLU layer.

Shared Encoder Bone Surface Segmentation
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Fig. 2. An overview of the proposed SSNet for simultaneous bone surface and shadow
segmentation from US images.

2.3 Cross Task Feature Transfer Block
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Fig. 3. An overview of the Cross Task Feature Transfer Block.

n

To leverage the joint-learning capabilities of these two highly-related tasks,
we propose a cross task feature transfer (CTFT) block used in between the two
decoders. CTFT extracts complementary features from the two decoder branches
using a squeeze and excitation block [9] and forwards them to the next decoder
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blocks of respective branches. We use squeeze and excitation block to learn which
features of the surface segmentation decoder would help in segmenting bone
shadow and vice-versa. Squeeze and excite enables dynamic channel-wise feature
re-calibration thus help extract features that contributes to the complementary
task. The details of CTFT are illustrated in Figure [3] It takes in two inputs:
Fourface and Fspadow corresponding to the feature maps of bone surface and
shadow decoders. Fyyyfqce is passed through a squeeze and excite layer to obtain
the residual Rsyrface Which is added to Fspadow to obtain Fshadow. Fshad(,w is
then passed to the next block of the shadow segmentation decoder. Similarly,
Fshadow is passed through a squeeze and excite layer to obtain the residual
Rshadow Which is added to Fyyr face to obtain stfacc.

2.4 Task Correspondence Consistency Loss

To guarantee both networks capture the inter-dependency between bone surface
and its corresponding shadow, we introduce two additional loss terms called Task
Correspondence Consistency Loss. For an US image X € X, the annotations
Y = (y1,y2) is a set of labels containing bone surface and shadow segmentation
masks, respectively. Let, Y = (11, =) be the predictions of the decoder networks.
Our additional loss term includes two mapping F} : y1 — y2 and F5 : yo — y1.
For any US image X, each loss term ensure consistency by translating in between
bone surface and shadows, i.e., y1 — Fi(y1) = y2. The task corresponding
consistency loss further regularizes the network to produce robust segmentation
masks for both task and prevent them to contradict each other. The proposed
Task Correspondence Consistency Loss £7¢C(X,Y) is defined as:

LTCX,Y) = LPOE (y1, Fa () + LPF (32, Fi (310)).-

3 Experiments and Results

Dataset: The study includes 25 healthy volunteers with the approval of the
institutional review board (IRB). Total 1042 different US images have been
collected using SonixTouch US machine (Analogic Corporation, Peabody, MA,
USA) with 2D C5-2/60 curvilinear and L14-5 linear transducer. For independent
testing, 3 new subjects have been included in the study. Using handheld wireless
US scans (Clarius C3, ClariusMobile Health Corporation, BC, Canada), a total
of 185 scans have been collected. Depending on the depth setting, scan resolu-
tion varies between 0.lmm to 0.15mm. As both transducer and reconstruction
pipelines are different, Clarius have low image quality. The scans include knee,
femur, radius, and spine data and all of them are manually segmented by an
expert ultrasonographer. For the Sonix dataset, a random 80:20 split has been
applied based on the subject, making the final training set with 834 samples and
the test set with 208 samples.

Implementation Details: SSNet is trained using a batch size of 32. For train-
ing both branches, a two-step training phase is adapted. Each of these steps are
trained until convergence. The weights and bias of the network are optimized
using Adam optimizer with a learning rate of 107%. All US scans and their cor-
responding masks are resized to 224 x 224 pixels and rescaled between 0 to 1. All
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transformer blocks in the LeViT architecture were pre-trained on ImageNet-1k.
The overall loss function we use to train the multi-task network is,

L9 (X,Y) = LPOP (yy 1) + L5OP (o, ) + LTOO(X, V).
Binary-cross entropy loss has been used between the prediction and the ground
truth, which is expressed as,

1 w—1h—1
Here, w and h represents the dimension of ultrasound scan, p(x,y) denotes the
pixel in scan and p(x,y) denotes the output prediction at a specific location
(z,y). Test images can be forwarded through the network for both tasks in one
shot. The experiments are carried out on a Linux workstation with Intel 3.50
GHz CPU and a 12GB NVidia Titan Xp GPU using the PyTorch framework.
Dice coefficients are used to measure the segmentation performance of different
methods.

Quantitative Comparison: For bone shadow segmentation, we compare the
performance of our proposed method with that of UNet [10], MFG-CNN [11],
and PSPGAN MTL [I2]. PSPGAN MTL is the current state-of-the-art for bone
shadow segmentation. For bone surface segmentation, we compare with UNet
[10], MFG-CNN [11] without the classification labels, and LPT+GCT [13]. All
the methods are trained using the same training dataset as used to train the
proposed method. PSPGAN-MTL uses a conditional shape discriminator to en-
force bone interval boundaries which provides more accurate and robust bone
segmentation. Instead of using bone interval boundaries during the training, we
enforce the boundary from the bone surface segmentation mask during inference
instead. Average test results are shown in Table [I} It can be observed that the
shared network SSNet outperforms the current state-of-the-art [12] and individ-
ual networks for both bone and shadow segmentation (paired t-test < 0.05).

Table 1. Results averaged over 5 folds. Numbers correspond to dice score with standard
deviation. Boldface numbers indicate the best segmentation performance.

SonixTouch Clarius
Method Surface (%) Shadow (%) Surface (%) Shadow (%)
UNet [10] 76.01 £0.20 88.33£0.06 75.11 +£0.31 84.03+0.14
MFG-CNN [IT] 81.05 £ 0.06 - 82.23 £0.14 -
LPT+GCT [13] 81.65 £ 0.10 - 83.05£0.21 -
PSPGAN-MTL [12] — 93.49 £ 0.06 — 91.01 £0.18

SSNet+ CTFT + TCC loss (ours) 87.03 +0.21 96.18 +0.43 83.33 + 0.31 93.01 + 0.23

Qualitative Comparison: We present sample qualitative results in Fig. [4] for
both bone surface and shadow segmentation. It can be observed that the current
state-of-the-art methods result in either missed shadow regions or disjoint bone
segmentation maps. As our proposed method uses the inter-dependency between
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these tasks, we see a significant improvement with less discrepancies compared

to the ground truth annotations.
’/ . \.;vn‘ N
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(a)
Fig.4. Top Row - Bone surface segmentation. Bottom Row - Bone shadow segmen-
tation. (a) Input US scan (b) Ground Truth (c) Output from current state-of-the-art
[13] (surface), [12] (shadow) (d) Ours.

(a)

4 Discussion

Ablation Study: To understand the contribution of each individual module
in the proposed SSNet, we conduct an ablation study and report it in Table
It can be observed that addition of CTFT helps improve the performance of
both surface and shadow segmentation by injecting complementary features to
the respective decoders. Also, using the propose task consistency (£7¢Y) further
regularizes the network and boosts the segmentation performance.

Table 2. Ablation Study. Numbers correspond to dice score.

SonixTouch Clarius
Method Surface (%) Shadow (%) Surface (%) Shadow (%)
SSNet (Base) 82.954+0.13 93.344+0.06 81.714+0.20 90.94 £ 0.22
SSNet + CTFT 84.034+0.11 94.884+0.16 81.134+0.19 92.43 £0.18

SSNet + CTFT + £79¢ (ours) 87.03 +0.21 96.18 & 0.43 83.33 +0.31 93.01 +0.23

Importance of joint learning: Qualitative results in Fig [5| shows the im-
portance of the joint learning framework. The result from cascaded network
demonstrates that the faulty output from either of the network can produce
wrong corresponding prediction. Cascaded network corresponds to using a deep
network to predict the bone shadow map from bone surface segmentation map
and vice-versa. For example, missing or joint boundaries in bone surface segmen-
tation may result in wrong bone intervals in shadow network as demonstrated
in the top row of Fig[5l Similarly, over or under-segmented bone shadow predic-
tions may produce faulty surface estimations. However, as each of the decoders
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Fig. 5. (a) Input US scan (b) Surface ground truth (c) Shadow ground truth (d)
Individual network output (e) Output generated from cascaded network (f) Surface
output from ours (g) Shadow output from ours.

in our network is specialized for their respective task and further regularized by
ensuring cross-task consistency, our network produces more consistent results.
Effectiveness of CTFT: In Table |3 we show that adding CTFT to the base
network improves the segmentation performance. To further Validate the claim,
we conduct more experiments as seen in Table[3| It can be observed that adding
CTFT to a joint-UNet architecture results in a boost in performance.

Table 3. Ablation Study. All results are reported in Dice score.

SonixTouch Clarius
Method Surface (%) Shadow (%) Surface (%) Shadow (%)
Joint-UNet 76.45 + 0.03 86.06 = 0.15 75.11 4+ 0.33 84.01 £ 0.17

Joint-UNet + CTFT 77.19 +£0.17 89.01 £0.15 75.81 +0.21 84.71 £0.11

5 Conclusion

Accurate, complete, and robust bone and shadow segmentation are important
to make ultrasound an essential imaging modality in clinically acceptable or-
thopedics procedures. In this paper, we propose an end-to-end network to si-
multaneously perform robust and accurate bone and shadow segmentation by
leveraging mutual information between the two tasks. The main novelty of our
work lies in (1) the first systematic design of exploiting interrelation between
two tasks to improve both bone and shadow segmentation, and (2) the design
of fusion method of CNN and vision transformer to leverage multi-task learning
while optimizing accuracy-efficiency trade-off. We believe the multi-task learn-
ing framework is an important contribution to the field of US-based orthopedic
procedures.



Simultaneous Bone and Shadow Segmentation Network 9

References

10.

11.

12.

13.

. Alsinan, A., Vives, M., Patel, V., Hacihaliloglu, I.: Spine surface segmentation from

ultrasound using multi-feature guided cnn. CAOS 3, 6-10 (2019)

Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Automatic segmentation of bone sur-
faces from ultrasound using a filter-layer-guided cnn. International journal of com-
puter assisted radiology and surgery 14(5), 775-783 (2019)

Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Bone shadow segmentation from ul-
trasound data for orthopedic surgery using gan. International Journal of Computer
Assisted Radiology and Surgery 15(9), 1477-1485 (2020)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)

Graham, B., El-Nouby, A., Touvron, H., Stock, P., Joulin, A., Jégou, H., Douze,
M.: Levit: a vision transformer in convnet’s clothing for faster inference. arXiv
preprint arXiv:2104.01136 (2021)

Hacihaliloglu, I.: Enhancement of bone shadow region using local phase-based ul-
trasound transmission maps. International journal of computer assisted radiology
and surgery 12(6), 951-960 (2017)

Hacihaliloglu, I.: Ultrasound imaging and segmentation of bone surfaces: A review.
Technology 5(02), 74-80 (2017)

Hacihaliloglu, I., Rasoulian, A., Rohling, R.N., Abolmaesumi, P.: Local phase ten-
sor features for 3-d ultrasound to statistical shape+ pose spine model registration.
IEEE transactions on Medical Imaging 33(11), 2167-2179 (2014)

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132-7141 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234-241. Springer (2015)

Wang, P., Patel, V.M., Hacihaliloglu, I.: Simultaneous segmentation and classi-
fication of bone surfaces from ultrasound using a multi-feature guided cnn. In:
International conference on medical image computing and computer-assisted in-
tervention. pp. 134-142. Springer (2018)

Wang, P., Vives, M., Patel, V.M., Hacihaliloglu, I.: Robust bone shadow segmenta-
tion from 2d ultrasound through task decomposition. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 805-814.
Springer (2020)

Wang, P., Vives, M., Patel, V.M., Hacihaliloglu, I.: Robust real-time bone surfaces
segmentation from ultrasound using a local phase tensor-guided cnn. International
Journal of Computer Assisted Radiology and Surgery 15, 1127-1135 (2020)



	Simultaneous Bone and Shadow Segmentation Network using Task Correspondence Consistency

