Skip to main content

Unsupervised Contrastive Learning of Image Representations from Ultrasound Videos with Hard Negative Mining

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Rich temporal information and variations in viewpoints make video data an attractive choice for learning image representations using unsupervised contrastive learning (UCL) techniques. State-of-the-art (SOTA) contrastive learning techniques consider frames within a video as positives in the embedding space, whereas the frames from other videos are considered negatives. We observe that unlike multiple views of an object in natural scene videos, an Ultrasound (US) video captures different 2D slices of an organ. Hence, there is almost no similarity between the temporally distant frames of even the same US video. In this paper we propose to instead utilize such frames as hard negatives. We advocate mining both intra-video and cross-video negatives in a hardness-sensitive negative mining curriculum in a UCL framework to learn rich image representations. We deploy our framework to learn the representations of Gallbladder (GB) malignancy from US videos. We also construct the first large-scale US video dataset containing 64 videos and 15,800 frames for learning GB representations. We show that the standard ResNet50 backbone trained with our framework improves the accuracy of models pretrained with SOTA UCL techniques as well as supervised pretrained models on ImageNet for the GB malignancy detection task by 2–6%. We further validate the generalizability of our method on a publicly available lung US image dataset of COVID-19 pathologies and show an improvement of 1.5% compared to SOTA. Source code, dataset, and models are available at https://gbc-iitd.github.io/usucl.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Butterfly videos. https://www.butterflynetwork.com/index.html, Accessed: 2 Mar 2022

  2. Afshar, P., et al.: Covid-CT-MD, Covid-19 computed tomography scan dataset applicable in machine learning and deep learning. Sci. Data 8(1), 1–8 (2021)

    Article  MathSciNet  Google Scholar 

  3. Alzubaidi, L., et al.: Towards a better understanding of transfer learning for medical imaging: a case study. Appl. Sci. 10(13), 4523 (2020)

    Article  Google Scholar 

  4. Ardila, D., et al.: End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25(6), 954–961 (2019)

    Article  Google Scholar 

  5. Basu, S., Gupta, M., Rana, P., Gupta, P., Arora, C.: Surpassing the human accuracy: detecting gallbladder cancer from USG images with curriculum learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20886–20896 (2022)

    Google Scholar 

  6. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. Jama 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  7. Bo, X., et al.: Diagnostic accuracy of imaging modalities in differentiating xanthogranulomatous cholecystitis from gallbladder cancer. Ann. Transl. Med. 7(22), 627 (2019)

    Article  Google Scholar 

  8. Born, J., et al.: POCOVID-Net: automatic detection of COVID-19 from a new lung ultrasound imaging dataset (pocus). arXiv preprint arXiv:2004.12084 (2020)

  9. Chen, T., et al.: Computer-aided diagnosis of gallbladder polyps based on high resolution ultrasonography. Comput. Methods Programs Biomed. 185, 105118 (2020)

    Article  Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  11. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  12. Chen, Y., et al.: USCL: pretraining deep ultrasound image diagnosis model through video contrastive representation learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 627–637. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_60

    Chapter  Google Scholar 

  13. Cheng, P.M., Malhi, H.S.: Transfer learning with convolutional neural networks for classification of abdominal ultrasound images. J. Digit. Imaging 30(2), 234–243 (2017)

    Article  Google Scholar 

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  15. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. NIPS 33, 21271–21284 (2020)

    Google Scholar 

  16. Gupta, P., Kumar, M., Sharma, V., Dutta, U., Sandhu, M.S.: Evaluation of gallbladder wall thickening: a multimodality imaging approach. Expert Rev. Gastroenterol. Hepatol. 14(6), 463–473 (2020)

    Article  Google Scholar 

  17. Gupta, P., et al.: Gallbladder reporting and data system (gb-rads) for risk stratification of gallbladder wall thickening on ultrasonography: an international expert consensus. Abdom. Radiol., 1–12 (2021)

    Google Scholar 

  18. Gupta, P., et al.: Imaging-based algorithmic approach to gallbladder wall thickening. World J. Gastroenterol. 26(40), 6163 (2020)

    Article  Google Scholar 

  19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  21. Jeong, Y., et al.: Deep learning-based decision support system for the diagnosis of neoplastic gallbladder polyps on ultrasonography: preliminary results. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  22. Komodakis, N., Gidaris, S.: Unsupervised representation learning by predicting image rotations. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  23. Lian, J., et al.: Automatic gallbladder and gallstone regions segmentation in ultrasound image. Int. J. Comput. Assist. Radiol. Surg. 12(4), 553–568 (2017). https://doi.org/10.1007/s11548-016-1515-z

    Article  Google Scholar 

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp. 618–626 (2017)

    Google Scholar 

  25. Wu, H., Wang, X.: Contrastive learning of image representations with cross-video cycle-consistency. In: ICCV, pp. 10149–10159 (2021)

    Google Scholar 

  26. Xu, D., Xiao, J., Zhao, Z., Shao, J., Xie, D., Zhuang, Y.: Self-supervised spatiotemporal learning via video clip order prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10334–10343 (2019)

    Google Scholar 

  27. Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., Xie, P.: Covid-CT-dataset: a CT scan dataset about covid-19. arXiv preprint arXiv:2003.13865 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Basu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 878 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basu, S., Singla, S., Gupta, M., Rana, P., Gupta, P., Arora, C. (2022). Unsupervised Contrastive Learning of Image Representations from Ultrasound Videos with Hard Negative Mining. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics