Abstract
Corneal nerve fiber medical indicators are promising metrics for diagnosis of diabetic peripheral neuropathy. However, automatic nerve segmentation still faces the issues of insufficient data and expensive annotations. We propose a semi-supervised learning framework for CCM image segmentation. It includes self-supervised pre-training, supervised fine-tuning and self-training. The contrastive learning for pre-training pays more attention to global features and ignores local semantics, which is not friendly to the downstream segmentation task. Consequently, we adopt pre-training using masked image modeling as a proxy task on unlabeled images. After supervised fine-tuning, self-training is employed to make full use of unlabeled data. Experimental results show that our proposed method is effective and better than the supervised learning using nerve annotations with three-pixel-width dilation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, H., et al.: BEIT: BERT pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)
Chen, T., et al.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)
Chen, X., et al.: Context autoencoder for self-supervised representation learning. arXiv preprint arXiv:2202.03026 (2022)
Chen, X., et al.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR, pp. 2613–2622 (2021)
Chen, X., et al.: Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care 38(6), 1138–1144 (2015)
Ferdousi, M., et al.: Diagnosis of neuropathy and risk factors for corneal nerve loss in type 1 and type 2 diabetes: a corneal confocal microscopy study. Diabetes Care 44(1), 150–156 (2021)
Grill, J.B., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NIPS, vol. 33, pp. 21271–21284 (2020)
He, K., et al.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
He, K., et al.: Masked autoencoders are scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)
Kim, J., et al.: Automatic analysis of corneal nerves imaged using in vivo confocal microscopy. Clin. Exp. Optom. 101(2), 147–161 (2018)
Kucharski, A., et al.: CNN-watershed: a watershed transform with predicted markers for corneal endothelium image segmentation. Biomed. Sign. Process. Control 68, 102805 (2021)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)
Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: ICML, p. 896 (2013)
Lin, L., et al.: Automated segmentation of corneal nerves in confocal microscopy via contrastive learning based synthesis and quality enhancement. In: ISBI, pp. 1314–1318 (2021)
Mou, L., et al.: CS2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)
Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving Jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5
Pathak, D., et al.: Context encoders: Feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)
Pham, H., et al.: Meta pseudo labels. In: CVPR, pp. 11557–11568 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Salahuddin, T., et al.: Evaluation of loss functions for segmentation of corneal nerves. In: IECBES, pp. 533–537 (2021)
Samuli, L., et al.: Temporal ensembling for semi-supervised learning. In: ICLR, pp. 6–17 (2017)
Scarpa, F., et al.: Automatic evaluation of corneal nerve tortuosity in images from in vivo confocal microscopy. Invest. Opthalmol. Visual Sci. 52(9), 6404–6408 (2011)
Shtein, R.M., et al.: Corneal confocal microscopy as a measure of diabetic neuropathy. Diabetes 62(1), 25–26 (2013)
Tarvainen, A., et al.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NIPS, vol. 30, pp. 1195–1204 (2017)
Tavakoli, M., et al.: Corneal confocal microscopy: a novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care 33(8), 1792–1797 (2010)
Tavakoli, M., et al.: Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. In: ICLR, 13, no. 1, pp. 300–307 (2010)
Wei, S., et al.: A deep learning model for automated sub-basal corneal nerve segmentation and evaluation using in vivo confocal microscopy. Transl. Vis. Sci. Technol. 9(2), 32–32 (2020)
Williams, B.M., et al.: An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 63(2), 419–430 (2019). https://doi.org/10.1007/s00125-019-05023-4
Xie, Q., et al.: Self-training with noisy student improves imagenet classification. In: CVPR, pp. 10687–10698 (2020)
Xie, Q., et al.: Unsupervised data augmentation for consistency training. In: NIPS, vol. 33, pp. 6256–6268 (2020)
Xie, Z., et al.: SimMIM: a simple framework for masked image modeling. arXiv preprint arXiv:2111.09886 (2021)
Yang, C., et al.: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images. IEEE J. Biomed. Health Inform. 26(2), 648–659 (2022)
Yildiz, E., et al.: Generative adversarial network based automatic segmentation of corneal subbasal nerves on in vivo confocal microscopy images. Transl. Vis. Sci. Technol. 10(6), 33–33 (2021)
Yu, J., et al.: Free-form image inpainting with gated convolution. In: ICCV (2019)
Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, Y., Yang, L., Chen, J., Fredericksen, M., Hughes, D.P., Chen, D.Z.: Deep adversarial networks for biomedical image segmentation utilizing unannotated images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 408–416. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_47
Zhao, Y., et al.: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Trans. Med. Imaging 39(9), 2725–2737 (2020)
Zhou, J., et al.: iBot: image BERT pre-training with online tokenizer. arXiv preprint arXiv:2111.07832 (2021)
Ziegler, D., et al.: Early detection of nerve fiber loss by corneal confocal microscopy and skin biopsy in recently diagnosed type 2 diabetes. Diabetes 63(7), 2454–2463 (2014)
Zoph, B., et al.: Rethinking pre-training and self-training. In: NIPS, vol. 33, pp. 3833–3845 (2020)
Acknowledgements
This work is supported by China National Key R &D Program (No. 2020YFC2009006 and 2020YFC2009000), and Natural Science Basic Research Plan in Shaanxi Province of China (2020JM-129).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J. et al. (2022). Semi-supervised Learning for Nerve Segmentation in Corneal Confocal Microscope Photography. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-16440-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16439-2
Online ISBN: 978-3-031-16440-8
eBook Packages: Computer ScienceComputer Science (R0)