Skip to main content

Vol2Flow: Segment 3D Volumes Using a Sequence of Registration Flows

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

This work proposes a self-supervised algorithm to segment each arbitrary anatomical structure in a 3D medical image produced under various acquisition conditions, dealing with domain shift problems and generalizability. Furthermore, we advocate an interactive setting in the inference time, where the self-supervised model trained on unlabeled volumes should be directly applicable to segment each test volume given the user-provided single slice annotation. To this end, we learn a novel 3D registration network, namely Vol2Flow, from the perspective of image sequence registration to find 2D displacement fields between all adjacent slices within a 3D medical volume together. Specifically, we present a novel 3D CNN-based architecture that finds a series of registration flows between consecutive slices within a whole volume, resulting in a dense displacement field. A new self-supervised algorithm is proposed to learn the transformations or registration fields between the series of 2D images of a 3D volume. Consequently, we enable gradually propagating the user-provided single slice annotation to other slices of a volume in the inference time. We demonstrate that our model substantially outperforms related methods on various medical image segmentation tasks through several experiments on different medical image segmentation datasets. Code is available at https://github.com/AdelehBitarafan/Vol2Flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.synapse.org/#!Synapse:syn3193805/wiki/217789.

References

  1. Ahmad, M., et al.: Deep belief network modeling for automatic liver segmentation. IEEE Access 7, 20585–20595 (2019)

    Article  Google Scholar 

  2. Arganda-Carreras, I., et al.: Non-rigid consistent registration of 2D image sequences. Phys. Med. Biol. 55(20), 6215 (2010)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  4. Bitarafan, A., Baghshah, M.S., Gheisari, M.: Incremental evolving domain adaptation. IEEE Trans. Knowl. Data Eng. 28(8), 2128–2141 (2016)

    Article  Google Scholar 

  5. Bitarafan, A., Nikdan, M., Baghshah, M.S.: 3D image segmentation with sparse annotation by self-training and internal registration. IEEE J. Biomed. Health Inform. 25(7), 2665–2672 (2020)

    Article  Google Scholar 

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  7. Chen, S., Bortsova, G., García-Uceda Juárez, A., van Tulder, G., de Bruijne, M.: Multi-task attention-based semi-supervised learning for medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 457–465. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_51

    Chapter  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Conze, P.H., et al.: Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks. Artif. Intell. Med. 117, 102109 (2021)

    Article  Google Scholar 

  10. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  11. Heller, N., et al.: Data from c4kc-kits [data set]. Cancer Imaging Arch. 10 (2019)

    Google Scholar 

  12. Hermann, S., Werner, R.: High accuracy optical flow for 3D medical image registration using the census cost function. In: Klette, R., Rivera, M., Satoh, S. (eds.) PSIVT 2013. LNCS, vol. 8333, pp. 23–35. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53842-1_3

    Chapter  Google Scholar 

  13. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  14. Kavur, A.E., et al.: Chaos challenge-combined (CT-MR) healthy abdominal organ segmentation. Med. Image Anal. 69, 101950 (2021)

    Article  Google Scholar 

  15. Keeling, S.L., Ring, W.: Medical image registration and interpolation by optical flow with maximal rigidity. J. Math. Imaging Vis. 23(1), 47–65 (2005)

    Article  MathSciNet  Google Scholar 

  16. Li, Z., Dong, Z., Yu, A., He, Z., Zhu, X.: A robust image sequence registration algorithm for videosar combining surf with inter-frame processing. In: IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 2794–2797. IEEE (2019)

    Google Scholar 

  17. Liu, X., Song, L., Liu, S., Zhang, Y.: A review of deep-learning-based medical image segmentation methods. Sustainability 13(3), 1224 (2021)

    Article  Google Scholar 

  18. Mocanu, S., Moody, A.R., Khademi, A.: FlowREG: fast deformable unsupervised medical image registration using optical flow. arXiv preprint arXiv:2101.09639 (2021)

  19. Radiuk, P.: Applying 3D U-net architecture to the task of multi-organ segmentation in computed tomography. Appl. Comput. Syst. 25(1), 43–50 (2020)

    Article  Google Scholar 

  20. Roth, H., Farag, A., Turkbey, E., Lu, L., Liu, J., Summers, R.: Data from pancreas-CT (2016)

    Google Scholar 

  21. Roth, H., et al.: A new 2.5 d representation for lymph node detection in CT. Cancer Imaging Arch. (2018)

    Google Scholar 

  22. Soler, L., et al.: 3D image reconstruction for comparison of algorithm database: a patient specific anatomical and medical image database. Technical report, IRCAD, Strasbourg, France (2010)

    Google Scholar 

  23. Van Ginneken, B., Heimann, T., Styner, M.: 3D segmentation in the clinic: a grand challenge. In: MICCAI workshop on 3D segmentation in the clinic: a grand challenge, vol. 1, pp. 7–15 (2007)

    Google Scholar 

  24. Wang, G., et al.: Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans. Med. Imaging 37(7), 1562–1573 (2018)

    Article  Google Scholar 

  25. Wang, G., et al.: Slic-Seg: slice-by-slice segmentation propagation of the placenta in fetal MRI using one-plane scribbles and online learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 29–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_4

    Chapter  Google Scholar 

  26. Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3646–3655 (2020)

    Google Scholar 

  27. Yeung, P.-H., Namburete, A.I.L., Xie, W.: Sli2Vol: annotate a 3D volume from a single slice with self-supervised learning. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 69–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_7

    Chapter  Google Scholar 

  28. Zhang, X., Xie, W., Huang, C., Zhang, Y., Wang, Y.: Self-supervised tumor segmentation through layer decomposition. arXiv preprint arXiv:2109.03230 (2021)

  29. Zheng, Z., Zhang, X., Xu, H., Liang, W., Zheng, S., Shi, Y.: A unified level set framework combining hybrid algorithms for liver and liver tumor segmentation in CT images. In: BioMed research International 2018 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors were partially supported by the grant NPRP-11S-1219- 170106 from the Qatar National Research Fund (a member of the Qatar Foundation). The findings herein are however solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Soleymani Baghshah .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 14954 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bitarafan, A., Azampour, M.F., Bakhtari, K., Soleymani Baghshah, M., Keicher, M., Navab, N. (2022). Vol2Flow: Segment 3D Volumes Using a Sequence of Registration Flows. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics