Skip to main content

NerveFormer: A Cross-Sample Aggregation Network for Corneal Nerve Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The segmentation of corneal nerves in corneal confocal microscopy (CCM) is of great to the quantification of clinical parameters in the diagnosis of eye-related diseases and systematic diseases. Existing works mainly use convolutional neural networks to improve the segmentation accuracy, while further improvement is needed to mitigate the nerve discontinuity and noise interference. In this paper, we propose a novel corneal nerve segmentation network, named NerveFormer, to resolve the above-mentioned limitations. The proposed NerveFormer includes a Deformable and External Attention Module (DEAM), which exploits the Transformer-based Deformable Attention (TDA) and External Attention (TEA) mechanisms. TDA is introduced to explore the local internal nerve features in a single CCM, while TEA is proposed to model global external nerve features across different CCM images. Specifically, to efficiently fuse the internal and external nerve features, TDA obtains the query set required by TEA, thereby strengthening the characterization ability of TEA. Therefore, the proposed model aggregates the learned features from both single-sample and cross-sample, allowing for better extraction of corneal nerve features across the whole dataset. Experimental results on two public CCM datasets show that our proposed method achieves state-of-the-art performance, especially in terms of segmentation continuity and noise discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://imagej.nih.gov/ij/.

References

  1. Annunziata, R., Kheirkhah, A., Hamrah, P., Trucco, E.: Scale and curvature invariant ridge detector for tortuous and fragmented structures. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 588–595. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_70

    Chapter  Google Scholar 

  2. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  3. Colonna, A., Scarpa, F., Ruggeri, A.: Segmentation of corneal nerves using a U-Net-based convolutional neural network. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 185–192. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_22

    Chapter  Google Scholar 

  4. Dabbah, M.A., Graham, J., Petropoulos, I., Tavakoli, M., Malik, R.A.: Dual-model automatic detection of nerve-fibres in corneal confocal microscopy images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 300–307. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15705-9_37

    Chapter  Google Scholar 

  5. Gao, Y., Zhou, M., Metaxas, D.N.: UTNet: a hybrid transformer architecture for medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 61–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_6

    Chapter  Google Scholar 

  6. Gu, Z., et al.: Ce-net: Context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  7. Guimarães, P., Wigdahl, J., Poletti, E., Ruggeri, A.: A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5422–5425. IEEE (2014)

    Google Scholar 

  8. Guo, M.H., Liu, Z.N., Mu, T.J., Hu, S.M.: Beyond self-attention: External attention using two linear layers for visual tasks. arXiv preprint arXiv:2105.02358 (2021)

  9. Ji, Y., Zhang, R., Wang, H., Li, Z., Wu, L., Zhang, S., Luo, P.: Multi-compound transformer for accurate biomedical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 326–336. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_31

    Chapter  Google Scholar 

  10. Mou, L., et al.: CS-net: channel and spatial attention network for curvilinear structure segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 721–730. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_80

    Chapter  Google Scholar 

  11. Mou, L., et al.: Cs2-net: deep learning segmentation of curvilinear structures in medical imaging. Med.l Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Su, P., et al.: Corneal nerve tortuosity grading via ordered weighted averaging-based feature extraction. Med. Phys. 47(10), 4983–4996 (2020)

    Article  Google Scholar 

  14. Su, P.Y., Hu, F.R., Chen, Y.M., Han, J.H., Chen, W.L.: Dendritiform cells found in central cornea by in-vivo confocal microscopy in a patient with mixed bacterial keratitis. Ocular Immunology Inflammation 14(4), 241–244 (2006)

    Article  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  16. Wei, S., Shi, F., Wang, Y., Chou, Y., Li, X.: A deep learning model for automated sub-basal corneal nerve segmentation and evaluation using in vivo confocal microscopy. Trans. Visi. Sci. Technol. 9(2), 32–32 (2020)

    Article  Google Scholar 

  17. Williams, B.M., et al.: An artificial intelligence-based deep learning algorithm for the diagnosis of diabetic neuropathy using corneal confocal microscopy: a development and validation study. Diabetologia 63(2), 419–430 (2019). https://doi.org/10.1007/s00125-019-05023-4

    Article  Google Scholar 

  18. Yang, C., et al.: Multi-discriminator adversarial convolutional network for nerve fiber segmentation in confocal corneal microscopy images. IEEE J. Biomed. Health Inf. (2021)

    Google Scholar 

  19. Zhang, D., et al.: Automatic corneal nerve fiber segmentation and geometric biomarker quantification. Europ. Phys. J. Plus 135(2), 1–16 (2020). https://doi.org/10.1140/epjp/s13360-020-00127-y

    Article  Google Scholar 

  20. Zhao, Y., et al.: Automated tortuosity analysis of nerve fibers in corneal confocal microscopy. IEEE Trans. Med. Imaging 39(9), 2725–2737 (2020)

    Article  Google Scholar 

  21. Zhao, Y., et al.: Uniqueness-driven saliency analysis for automated lesion detection with applications to retinal diseases. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 109–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_13

    Chapter  Google Scholar 

  22. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgement

This work was supported in part by the National Science Foundation Program of China (62103398 and 61906181), Zhejiang Provincial Natural Science Foundation of China (LR22F020008), in part by the Youth Innovation Promotion Association CAS (2021298), in part by the Ningbo major science and technology task project (2021Z054) and in part by the AME Programmatic Fund (A20H4b0141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiong Zhang or Yitian Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J. et al. (2022). NerveFormer: A Cross-Sample Aggregation Network for Corneal Nerve Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13434. Springer, Cham. https://doi.org/10.1007/978-3-031-16440-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16440-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16439-2

  • Online ISBN: 978-3-031-16440-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics