Skip to main content

Multimodal Brain Tumor Segmentation Using Contrastive Learning Based Feature Comparison with Monomodal Normal Brain Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

  • 8116 Accesses

Abstract

Many deep learning (DL) based methods for brain tumor segmentation have been proposed. Most of them put emphasis on elaborating deep network’s internal structure to enhance the capacity of learning tumor-related features, while other valuable related information, such as normal brain appearance, is often ignored. Inspired by the fact that radiologists are often trained to compare with normal tissues when identifying tumor regions, in this paper, we propose a novel brain tumor segmentation framework by adopting normal brain images as reference to compare with tumor brain images in the learned feature space. In this way, tumor-related features can be highlighted and enhanced for accurate tumor segmentation. Considering that the routine tumor brain images are multimodal while the normal brain images are often monomodal, a new contrastive learning based feature comparison module is proposed to solve incomparable issue between features learned from multimodal and monomodal images. In the experiments, both in-house and public (BraTS2019) multimodal tumor brain image datasets are used to evaluate our proposed framework, demonstrating better performance compared to the state-of-the-art methods in terms of Dice score, sensitivity, and Hausdorff distance. Code: https://github.com/hbliu98/CLFC-Brain-Tumor-Segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Astaraki, M., Toma-Dasu, I., Smedby, Ö., Wang, C.: Normal appearance autoencoder for lung cancer detection and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 249–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_28

    Chapter  Google Scholar 

  2. Baur, C., Denner, S., Wiestler, B., Navab, N., Albarqouni, S.: Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med. Image Anal., 101952 (2021)

    Google Scholar 

  3. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  4. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  5. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  6. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  7. Evans, A., Collins, D., Milner, B.: An MRI-based stereotactic brain atlas from 300 young normal subjects, 408, Anaheim. In: Proceedings of the 22nd Symposium of the Society for Neuroscience (1992)

    Google Scholar 

  8. Huang, H., He, R., Sun, Z., Tan, T., et al.: Introvae: introspective variational autoencoders for photographic image synthesis. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. IXI: Information extraction from images. www.brain-development.org

  11. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  12. Luo, Y., et al.: Adaptive rectification based adversarial network with spectrum constraint for high-quality pet image synthesis. Med. Image Anal. 77, 102335 (2022)

    Article  Google Scholar 

  13. Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-D fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybern. 49(3), 1123–1136 (2019)

    Article  Google Scholar 

  14. Radue, E.W., Weigel, M., Wiest, R., Urbach, H.: Introduction to magnetic resonance imaging for neurologists. Continuum Lifelong Learn. Neurol. 22(5), 1379–1398 (2016)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Siddiquee, M.M.R., et al.: Learning fixed points in generative adversarial networks: from image-to-image translation to disease detection and localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 191–200 (2019)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  18. Wang, K., et al.: Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning. Med. Image Anal. 79, 102447 (2022)

    Article  Google Scholar 

  19. Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58(3), 805–817 (2011)

    Article  Google Scholar 

  20. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  21. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Nie, D., Shen, D., Wang, J., Tang, Z. (2022). Multimodal Brain Tumor Segmentation Using Contrastive Learning Based Feature Comparison with Monomodal Normal Brain Images. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics