Skip to main content

A Geometry-Constrained Deformable Attention Network for Aortic Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

Abstract

Morphological segmentation of the aorta is significant for aortic diagnosis, intervention, and prognosis. However, it is difficult for existing methods to achieve the continuity of spatial information and the integrity of morphological extraction, due to the gradually variable and irregular geometry of the aorta in the long-sequence computed tomography (CT). In this paper, we propose a geometry-constrained deformable attention network (GDAN) to learn the aortic common features through interaction with context information of the anatomical space. The deformable attention extractor in our model can adaptively adjust the position and the size of patches to match different shapes of the aorta. The self-attention mechanism is also helpful to explore the long-range dependency in CT sequences and capture more semantic features. The geometry-constrained guider simplifies the morphological representation with a high spatial similarity. The guider imposes strong constraints on geometric boundaries, which changes the sensitivity of gradually variable aortic morphology in the network. Guider can assist the correct extraction of semantic features combining deformable attention extractor. In 204 cases of aortic CT dataset, including 42 normal aorta, 45 coarctation of the aorta, and 107 aortic dissection, our method obtained a mean dice similarity coefficient of 0.943 on the test set (20%), outperforming 6 state-of-the-art methods about aortic segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hiratzka, L.F., et al.: 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J. Am. Coll. Cardiol. 55(14), 27–129 (2010)

    Article  Google Scholar 

  2. Erbel, R., et al.: 2014 ESC guidelines on the diagnosis and treatment of aortic diseases. Russ. J. Cardiol. 123(7), 7–72 (2015)

    Google Scholar 

  3. Roberts, C.S., Roberts, W.C.: Aortic dissection with the entrance tear in the descending thoracic aorta. Analysis of 40 necropsy patients. Ann. Surg. 213(4), 356–368 (1991)

    Google Scholar 

  4. Zhao, Q., et al.: Predictors of aortic dilation in patients with coarctation of the aorta: evaluation with dual-source computed tomography. BMC Cardiovasc. Disord. 18(1), 1–7 (2018)

    Google Scholar 

  5. Garzón, G., Fernández-Velilla, M., Martí, M., Acitores, I., Ybáñez, F., Riera, L.: Endovascular stent-graft treatment of thoracic aortic disease. Radiographics 25(suppl 1), S229–S244 (2005)

    Article  Google Scholar 

  6. Spinelli, D., et al.: Current evidence in predictors of aortic growth and events in acute type B aortic dissection. J. Vasc. Surg. 68(6), 1925–1935 (2018)

    Article  Google Scholar 

  7. Dugas, A., et al.: Reproducibility of abdominal aortic aneurysm diameter measurement and growth evaluation on axial and multiplanar computed tomography reformations. Cardiovasc. Interv. Radiol. 35(4), 779–787 (2012)

    Article  Google Scholar 

  8. Nance, J.W., Ringel, R.E., Fishman, E.K.: Coarctation of the aorta in adolescents and adults: a review of clinical features and CT imaging. J. Cardiovasc. Comput. Tomogr. 10(1), 1–12 (2016)

    Article  Google Scholar 

  9. Fleischmann, D., et al.: Imaging and surveillance of chronic aortic dissection: a scientific statement from the American heart association. Circ. Cardiovasc. Imaging 15(3), e000075 (2022)

    Google Scholar 

  10. Gao, Z., Liu, X., Qi, S., Wu, W., Hau, W.K., Zhang, H.: Automatic segmentation of coronary tree in CT angiography images. Int. J. Adapt. Control Signal Process. 33(8), 1239–1247 (2019)

    Article  MathSciNet  Google Scholar 

  11. Wu, C., et al.: Vessel-GAN: angiographic reconstructions from myocardial CT perfusion with explainable generative adversarial networks. Future Gener. Comput. Syst. 130, 128–139 (2022)

    Article  Google Scholar 

  12. Gao, Z., et al.: Learning physical properties in complex visual scenes: an intelligent machine for perceiving blood flow dynamics from static CT angiography imaging. Neural Netw. 123, 82–93 (2020)

    Article  Google Scholar 

  13. Fantazzini, A., et al.: 3D automatic segmentation of aortic computed tomography angiography combining multi-view 2D convolutional neural networks. Cardiovasc. Eng. Technol. 11(5), 576–586 (2020)

    Article  Google Scholar 

  14. Kovács, T., Cattin, P., Alkadhi, H., Wildermuth, S., Székely, G.: Automatic segmentation of the aortic dissection membrane from 3D CTA images. In: Yang, G.-Z., Jiang, T.Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 317–324. Springer, Heidelberg (2006). https://doi.org/10.1007/11812715_40

    Chapter  Google Scholar 

  15. Cao, L., et al.: Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning. Eur. J. Radiol. 121, 108713 (2019)

    Google Scholar 

  16. Chen, D., et al.: Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification. Med. Image Anal. 69, 101931 (2021)

    Google Scholar 

  17. Pepe, A., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal. 65, 101773 (2020)

    Google Scholar 

  18. Fu, F., et al.: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  19. Raman, R., Napel, S., Beaulieu, C.F., Bain, E.S., Jeffrey Jr., R.B., Rubin, G.D.: Automated generation of curved planar reformations from volume data: method and evaluation. Radiology 223(1), 275–280 (2002)

    Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022(2021)

    Google Scholar 

  21. Xia, Z., Pan, X., Song, S., Li, L.E., Huang, G.: Vision transformer with deformable attention. arXiv preprint arXiv:2201.00520 (2022)

  22. Kirkland, E.J.: Bilinear interpolation. In: Kirkland, E.J. (ed.) Advanced Computing in Electron Microscopy, pp. 261–263. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6533-2_12

  23. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Graph. Models Image Process. 56(6), 462–478 (1994)

    Article  Google Scholar 

  24. Lyu, T., et al.: Dissected aorta segmentation using convolutional neural networks. Comput. Methods Programs Biomed. 211, 106417 (2021)

    Google Scholar 

  25. Deng, X., Zheng, Y., Xu, Y., Xi, X., Li, N., Yin, Y.: Graph cut based automatic aorta segmentation with an adaptive smoothness constraint in 3D abdominal CT images. Neurocomputing 310, 46–58 (2018)

    Article  Google Scholar 

  26. Yu, Y., et al.: A threedimensional deep convolutional neural network for automatic segmentation and diameter measurement of type B aortic dissection. Korean J. Radiol. 22(2), 168–178 (2021)

    Article  Google Scholar 

  27. Cheng, J., Tian, S., Yu, L., Ma, X., Xing, Y.: A deep learning algorithm using contrast-enhanced computed tomography (CT) images for segmentation and rapid automatic detection of aortic dissection. Biomed. Signal Process. Control 62, 102145 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Shenzhen Science and Technology Program (Grant No. GXWD20201231165807008, 20200825113400001), Guangdong Basic and Applied Basic Research Foundation (2022A1515011384), National Natural Science Foundation of China (62101606), Guangdong Natural Science Funds (2020B1515120061), and Natural Science Foundation of Guangdong Province (Grant No. 2020A1515010650).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, W., Liu, H., Gu, L., Gao, Z. (2022). A Geometry-Constrained Deformable Attention Network for Aortic Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics