Abstract
As information sources are usually imperfect, it is necessary to take into account their reliability in multi-source information fusion tasks. In this paper, we propose a new deep framework allowing us to merge multi-MR image segmentation results using the formalism of Dempster-Shafer theory while taking into account the reliability of different modalities relative to different classes. The framework is composed of an encoder-decoder feature extraction module, an evidential segmentation module that computes a belief function at each voxel for each modality, and a multi-modality evidence fusion module, which assigns a vector of discount rates to each modality evidence and combines the discounted evidence using Dempster’s rule. The whole framework is trained by minimizing a new loss function based on a discounted Dice index to increase segmentation accuracy and reliability. The method was evaluated on the BraTs 2021 database of 1251 patients with brain tumors. Quantitative and qualitative results show that our method outperforms the state of the art, and implements an effective new idea for merging multi-information within deep neural networks.
This work was supported by the China Scholarship Council (No. 201808331005). It was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Our code will be available at https://github.com/iWeisskohl.
References
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dempster, A.P.: Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika 54(3–4), 515–528 (1967)
Denœux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man. Cybern. Part A Syst. Humans 30(2), 131–150 (2000)
Denœux, T., Dubois, D., Prade, H.: Representations of uncertainty in AI: beyond probability and possibility. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 119–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06164-7_4
Denœux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approx. Reasoning 113, 287–302 (2019)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
Huang, L., Denœux, T., Tonnelet, D., Decazes, P., Ruan, S.: Deep PET/CT fusion with Dempster-Shafer theory for lymphoma segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) Machine Learning in Medical Imaging, pp. 30–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_4
Huang, L., Ruan, S., Decazes, P., Denœux, T.: Evidential segmentation of 3D PET/CT images. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds.) Belief Functions: Theory and Applications, pp. 159–167. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88601-1_16
Huang, L., Ruan, S., Decazes, P., Denœux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. arXiv preprint arXiv:2201.13078 (2022)
Huang, L., Ruan, S., Denoeux, T.: Covid-19 classification with deep neural network and belief functions. In: The Fifth International Conference on Biological Information and Biomedical Engineering, pp. 1–4 (2021)
Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38
Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Mercier, D., Quost, B., Denœux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Inf. Fusion 9(2), 246–258 (2008)
Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)
Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A volumetric transformer for accurate 3D tumor segmentation. arXiv preprint arXiv:2111.13300 (2021)
Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976)
Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–243 (1994)
Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)
Zhou, T., Canu, S., Ruan, S.: Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation. Comput. Med. Imaging Graph. 86, 101811 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, L., Denoeux, T., Vera, P., Ruan, S. (2022). Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-16443-9_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16442-2
Online ISBN: 978-3-031-16443-9
eBook Packages: Computer ScienceComputer Science (R0)