Skip to main content

Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

  • 9431 Accesses

Abstract

As information sources are usually imperfect, it is necessary to take into account their reliability in multi-source information fusion tasks. In this paper, we propose a new deep framework allowing us to merge multi-MR image segmentation results using the formalism of Dempster-Shafer theory while taking into account the reliability of different modalities relative to different classes. The framework is composed of an encoder-decoder feature extraction module, an evidential segmentation module that computes a belief function at each voxel for each modality, and a multi-modality evidence fusion module, which assigns a vector of discount rates to each modality evidence and combines the discounted evidence using Dempster’s rule. The whole framework is trained by minimizing a new loss function based on a discounted Dice index to increase segmentation accuracy and reliability. The method was evaluated on the BraTs 2021 database of 1251 patients with brain tumors. Quantitative and qualitative results show that our method outperforms the state of the art, and implements an effective new idea for merging multi-information within deep neural networks.

This work was supported by the China Scholarship Council (No. 201808331005). It was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (Reference ANR-11-IDEX-0004-02).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code will be available at https://github.com/iWeisskohl.

References

  1. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  2. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  3. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  4. Dempster, A.P.: Upper and lower probability inferences based on a sample from a finite univariate population. Biometrika 54(3–4), 515–528 (1967)

    Article  MathSciNet  Google Scholar 

  5. Denœux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man. Cybern. Part A Syst. Humans 30(2), 131–150 (2000)

    Article  Google Scholar 

  6. Denœux, T., Dubois, D., Prade, H.: Representations of uncertainty in AI: beyond probability and possibility. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 119–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06164-7_4

    Chapter  Google Scholar 

  7. Denœux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approx. Reasoning 113, 287–302 (2019)

    Article  MathSciNet  Google Scholar 

  8. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)

    Google Scholar 

  9. Huang, L., Denœux, T., Tonnelet, D., Decazes, P., Ruan, S.: Deep PET/CT fusion with Dempster-Shafer theory for lymphoma segmentation. In: Lian, C., Cao, X., Rekik, I., Xu, X., Yan, P. (eds.) Machine Learning in Medical Imaging, pp. 30–39. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87589-3_4

    Chapter  Google Scholar 

  10. Huang, L., Ruan, S., Decazes, P., Denœux, T.: Evidential segmentation of 3D PET/CT images. In: Denœux, T., Lefèvre, E., Liu, Z., Pichon, F. (eds.) Belief Functions: Theory and Applications, pp. 159–167. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88601-1_16

    Chapter  Google Scholar 

  11. Huang, L., Ruan, S., Decazes, P., Denœux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. arXiv preprint arXiv:2201.13078 (2022)

  12. Huang, L., Ruan, S., Denoeux, T.: Covid-19 classification with deep neural network and belief functions. In: The Fifth International Conference on Biological Information and Biomedical Engineering, pp. 1–4 (2021)

    Google Scholar 

  13. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  14. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  15. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  16. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  17. Mercier, D., Quost, B., Denœux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Inf. Fusion 9(2), 246–258 (2008)

    Article  Google Scholar 

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision, pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Peiris, H., Hayat, M., Chen, Z., Egan, G., Harandi, M.: A volumetric transformer for accurate 3D tumor segmentation. arXiv preprint arXiv:2111.13300 (2021)

  20. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press, Princeton (1976)

    Google Scholar 

  21. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–243 (1994)

    Article  MathSciNet  Google Scholar 

  22. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

  23. Zhou, T., Canu, S., Ruan, S.: Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation. Comput. Med. Imaging Graph. 86, 101811 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Denoeux, T., Vera, P., Ruan, S. (2022). Evidence Fusion with Contextual Discounting for Multi-modality Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics