Skip to main content

Efficient Population Based Hyperparameter Scheduling for Medical Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13435))

  • 7378 Accesses

Abstract

The training hyperparameters (learning rate, augmentation policies, e.t.c) are key factors affecting the performance of deep networks for medical image segmentation. Manual or automatic hyperparameter optimization (HPO) is used to improve the performance. However, manual tuning is infeasible for a large number of parameters, and existing automatic HPO methods like Bayesian optimization are extremely time consuming. Moreover, they can only find a fixed set of hyperparameters. Population based training (PBT) has shown its ability to find dynamic hyperparameters and has fast search speed by using parallel training processes. However, it is still expensive for large 3D medical image datasets with limited GPUs, and the performance lower bound is unknown. In this paper, we focus on improving the network performance using hyperparameter scheduling via PBT with limited computation cost. The core idea is to train the network with a default setting from prior knowledge, and finetune using PBT based hyperparameter scheduling. Our method can achieve 1%–3% performance improvements over default setting while only taking 3%–10% computation cost of training from scratch using PBT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/automl/HpBandSter.

  2. 2.

    https://github.com/Project-MONAI/research-contributions/tree/master/DiNTS.

References

  1. Antonelli, M., et al.: The medical segmentation decathlon. arXiv preprint arXiv:2106.05735 (2021)

  2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2) (2012)

    Google Scholar 

  4. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyperparameter optimization at scale. In: International Conference on Machine Learning, pp. 1437–1446. PMLR (2018)

    Google Scholar 

  5. He, Y., Yang, D., Roth, H., Zhao, C., Xu, D.: DiNTS: differentiable neural network topology search for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2021)

    Google Scholar 

  6. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation: efficient learning of augmentation policy schedules. In: International Conference on Machine Learning, pp. 2731–2741. PMLR (2019)

    Google Scholar 

  7. Hoopes, A., Hoffmann, M., Fischl, B., Guttag, J., Dalca, A.V.: HyperMorph: amortized hyperparameter learning for image registration. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds.) IPMI 2021. LNCS, vol. 12729, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78191-0_1

    Chapter  Google Scholar 

  8. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Jaderberg, M., et al.: Population based training of neural networks. arXiv preprint arXiv:1711.09846 (2017)

  11. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248. PMLR (2016)

    Google Scholar 

  12. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  14. Nath, V., et al.: The power of proxy data and proxy networks for hyper-parameter optimization in medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 456–465. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_43

    Chapter  Google Scholar 

  15. Parker-Holder, J., Nguyen, V., Roberts, S.J.: Provably efficient online hyperparameter optimization with population-based bandits. Adv. Neural Inf. Process. Syst. 33, 17200–17211 (2020)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Schaffer, C.: A conservation law for generalization performance. In: Machine Learning Proceedings, pp. 259–265. Elsevier (1994)

    Google Scholar 

  18. Snoek, J., et al.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning, pp. 2171–2180. PMLR (2015)

    Google Scholar 

  19. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in the bandit detting: no tegret and experimental design. In: Proceedings of the 27th International Conference on Machine Learning. No. CONF, Omnipress (2010)

    Google Scholar 

  20. Tran, T., Stough, J.V., Zhang, X., Haggerty, C.M.: Bayesian optimization of 2D echocardiography Segmentation. In: International Symposium on Biomedical Imaging (ISBI), pp. 1007–1011. IEEE (2021)

    Google Scholar 

  21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  22. Yang, D., Roth, H., Xu, Z., Milletari, F., Zhang, L., Xu, D.: Searching learning strategy with reinforcement learning for 3D medical image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 3–11. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_1

    Chapter  Google Scholar 

  23. Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv preprint arXiv:2003.05689 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufan He .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 247 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Y., Yang, D., Myronenko, A., Xu, D. (2022). Efficient Population Based Hyperparameter Scheduling for Medical Image Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13435. Springer, Cham. https://doi.org/10.1007/978-3-031-16443-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16443-9_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16442-2

  • Online ISBN: 978-3-031-16443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics