Skip to main content

End-to-End Multi-Slice-to-Volume Concurrent Registration and Multimodal Generation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

For interventional procedures, a real-time mapping between treatment guidance images and planning data is challenging yet essential for successful therapy implementation. Because of time and machine constraints, it involves imaging of different modalities, resolutions and dimensions, along with severe out-of-plane deformations to handle. In this paper, we introduce MSV-RegSyn-Net, a novel, scalable, deep learning-based framework for concurrent slice-to-volume registration and high-resolution modality transfer synthesis. It consists of an end-to-end pipeline made up of (i) a cycle generative adversarial network for multimodal image translation combined with (ii) a multi-slice-to-volume deformable registration network. The concurrent nature of our approach creates mutual benefit for both tasks: image translation is naturally eased by explicit handling of out-of-plane deformations while registration benefits from bringing multimodal signals into the same domain. Our model is fully unsupervised and does not require any ground-truth deformation or segmentation mask. It obtains superior qualitative and quantitative performance for multi-slice MR to 3D CT pelvic imaging compared to state-of-the-art traditional and learning-based methods on both tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008). https://doi.org/10.1016/j.media.2007.06.004

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019). https://doi.org/10.1109/TMI.2019.2897538. http://arxiv.org/abs/1809.05231, arXiv:1809.05231

  3. Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., Shen, D.: Deep Learning based Inter-Modality Image Registration Supervised by Intra-Modality Similarity. arXiv:1804.10735, April 2018. http://arxiv.org/abs/1804.10735

  4. Cao, X., et al.: Deformable image registration based on similarity-steered CNN regression. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 300–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_35

    Chapter  Google Scholar 

  5. Esteban, J., Grimm, M., Unberath, M., Zahnd, G., Navab, N.: Towards fully automatic X-Ray to CT registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 631–639. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_70

    Chapter  Google Scholar 

  6. Estienne, T., et al.: Deep learning-based concurrent brain registration and tumor segmentation. Front. Comput. Neurosci. 14 (2020). https://www.frontiersin.org/article/10.3389/fncom.2020.00017

  7. Ferrante, E., Paragios, N.: Non-rigid 2D-3D medical image registration using Markov random fields. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 163–170. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_21

    Chapter  Google Scholar 

  8. Ferrante, E., Paragios, N.: Slice-to-volume medical image registration: a survey. Med. Image Anal. 39, 101–123 (2017). https://doi.org/10.1016/j.media.2017.04.010. https://www.sciencedirect.com/science/article/pii/S1361841517300701

  9. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008). https://doi.org/10.1016/j.media.2008.03.006. https://www.sciencedirect.com/science/article/pii/S1361841508000297

  10. Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: setting the state of the art with discrete methods. Annu. Rev. Biomed. Eng. 13, 219–244 (2011). https://doi.org/10.1146/annurev-bioeng-071910-124649

    Article  Google Scholar 

  11. Goodfellow, I.J., et al.: Generative Adversarial Networks. arXiv:1406.2661, June 2014. http://arxiv.org/abs/1406.2661

  12. Guo, H., Xu, X., Xu, S., Wood, B.J., Yan, P.: End-to-end ultrasound frame to volume registration. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 56–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_6

    Chapter  Google Scholar 

  13. Heinrich, M.P., et al.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012). https://doi.org/10.1016/j.media.2012.05.008. https://www.sciencedirect.com/science/article/pii/S1361841512000643

  14. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-Image Translation with Conditional Adversarial Networks. arXiv:1611.07004, November 2018. http://arxiv.org/abs/1611.07004

  15. Jaganathan, S., Wang, J., Borsdorf, A., Shetty, K., Maier, A.: Deep Iterative 2D/3D Registration. arXiv:2107.10004, vol. 12904, pp. 383–392 (2021). https://doi.org/10.1007/978-3-030-87202-1_37. http://arxiv.org/abs/2107.10004

  16. Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_40

    Chapter  Google Scholar 

  17. MacDonald, M.E., Dolati, P., Mitha, A.P., Eesa, M., Wong, J.H., Frayne, R.: Hemodynamic alterations measured with phase-contrast MRI in a giant cerebral aneurysm treated with a flow-diverting stent. Radiol. Case Rep. 10(2), 1109 (2015). https://doi.org/10.2484/rcr.v10i2.1109. https://www.sciencedirect.com/science/article/pii/S1930043316300334

  18. McWilliams, J.P., Lee, E.W., Yamamoto, S., Loh, C.T., Kee, S.T.: Image-guided tumor ablation: emerging technologies and future directions. Semin. Interv. Radiol. 27(3), 302–313 (2010). https://doi.org/10.1055/s-0030-1261789. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324186/

  19. Miao, S., Wang, Z.J., Liao, R.: Real-time 2D/3D Registration via CNN Regression. arXiv:1507.07505, April 2016. http://arxiv.org/abs/1507.07505

  20. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

  21. Pei, Y., et al.: Non-rigid craniofacial 2D-3D registration using CNN-based regression. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 117–125. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_14

    Chapter  Google Scholar 

  22. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  23. Thirion, J.P.: Non-rigid matching using demons. In: Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 245–251, June 1996. https://doi.org/10.1109/CVPR.1996.517081. ISSN 1063-6919

  24. Thirion, J.P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998). https://doi.org/10.1016/S1361-8415(98)80022-4. https://www.sciencedirect.com/science/article/pii/S1361841598800224

  25. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network. arXiv:1704.06065, vol. 10553, pp. 204–212 (2017). https://doi.org/10.1007/978-3-319-67558-9_24. http://arxiv.org/abs/1704.06065

  26. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  27. Xu, Z., et al.: Adversarial Uni- and Multi-modal Stream Networks for Multimodal Image Registration. arXiv:2007.02790, September 2020. http://arxiv.org/abs/2007.02790

  28. Yan, P., Xu, S., Rastinehad, A.R., Wood, B.J.: Adversarial Image Registration with Application for MR and TRUS Image Fusion. arXiv:1804.11024, October 2018. http://arxiv.org/abs/1804.11024

  29. Yang, H., et al.: Unpaired Brain MR-to-CT Synthesis using a Structure-Constrained CycleGAN. arXiv:1809.04536, September 2018. http://arxiv.org/abs/1809.04536

  30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv:1703.10593, August 2020. http://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury Leroy .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 797 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leroy, A. et al. (2022). End-to-End Multi-Slice-to-Volume Concurrent Registration and Multimodal Generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics