Skip to main content

Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Unrolled neural networks have enabled state-of-the-art reconstruction performance and fast inference times for the accelerated magnetic resonance imaging (MRI) reconstruction task. However, these approaches depend on fully-sampled scans as ground truth data which is either costly or not possible to acquire in many clinical medical imaging applications; hence, reducing dependence on data is desirable. In this work, we propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks in order to improve the data-efficiency and robustness to drifts in scale of the images that might stem from the variability of patient anatomies or change in field-of-view across different MRI scanners. Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints both with and without data augmentations on both in-distribution and out-of-distribution scaled images without significantly increasing the train or inference time.

B. Gunel and A. Sahiner—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, H.K., Mani, M.P., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2018)

    Article  Google Scholar 

  2. Bekkers, E.J., Lafarge, M.W., Veta, M., Eppenhof, K.A.J., Pluim, J.P.W., Duits, R.: Roto-translation covariant convolutional networks for medical image analysis. ArXiv abs/1804.03393 (2018)

    Google Scholar 

  3. Celledoni, E., Ehrhardt, M.J., Etmann, C., Owren, B., Schonlieb, C.B., Sherry, F.: Equivariant neural networks for inverse problems. Inverse Probl. 37, 085006 (2021)

    Google Scholar 

  4. Chen, D., Tachella, J., Davies, M.E.: Equivariant imaging: learning beyond the range space. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4379–4388 (2021)

    Google Scholar 

  5. Cohen, T., Geiger, M., Köhler, J., Welling, M.: Spherical CNNs. ArXiv abs/1801.10130 (2018)

    Google Scholar 

  6. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning, pp. 2990–2999. PMLR (2016)

    Google Scholar 

  7. Darestani, M.Z., Heckel, R.: Accelerated MRI with un-trained neural networks. IEEE Trans. Comput. Imaging 7, 724–733 (2021)

    Article  Google Scholar 

  8. Desai, A.D., et al.: VORTEX: Physics-driven data augmentations for consistency training for robust accelerated MRI reconstruction. In: MIDL (2022)

    Google Scholar 

  9. Desai, A.D., et al.: Noise2Recon: a semi-supervised framework for joint MRI reconstruction and denoising. arXiv preprint arXiv:2110.00075 (2021)

  10. Fabian, Z., Heckel, R., Soltanolkotabi, M.: Data augmentation for deep learning based accelerated MRI reconstruction with limited data. In: International Conference on Machine Learning, pp. 3057–3067. PMLR (2021)

    Google Scholar 

  11. Gunel, B., Mardani, M., Chaudhari, A., Vasanawala, S., Pauly, J.: Weakly supervised MR image reconstruction using untrained neural networks. In: Proceedings of International Society of Magnetic Resonance in Medicine (ISMRM) (2021)

    Google Scholar 

  12. Hadamard, J.: Sur les problèmes aux dérivées partielles et leur signification physique. Princeton Univ. Bull. 49–52 (1902)

    Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Knoll, F., et al.: Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magn. Reson. Med. 84(6), 3054–3070 (2020)

    Article  Google Scholar 

  15. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Resona. Med.: Off. J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  16. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  17. Mardani, M., et al.: Neural proximal gradient descent for compressive imaging. Adv. Neural Inf. Process. Syst. 31 (2018)

    Google Scholar 

  18. Müller, P., Golkov, V., Tomassini, V., Cremers, D.: Rotation-equivariant deep learning for diffusion MRI. ArXiv abs/2102.06942 (2021)

    Google Scholar 

  19. Ong, F., Amin, S., Vasanawala, S., Lustig, M.: Mridata.org: an open archive for sharing MRI raw data. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 26, p. 1 (2018)

    Google Scholar 

  20. Ong, F., Lustig, M.: SigPy: a python package for high performance iterative reconstruction. In: Proceedings of the ISMRM 27th Annual Meeting, Montreal, Quebec, Canada, vol. 4819 (2019)

    Google Scholar 

  21. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  22. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  23. Sahiner, A., Mardani, M., Ozturkler, B., Pilanci, M., Pauly, J.: Convex regularization behind neural reconstruction. arXiv preprint arXiv:2012.05169 (2020)

  24. Sandino, C.M., Cheng, J.Y., Chen, F., Mardani, M., Pauly, J.M., Vasanawala, S.S.: Compressed sensing: from research to clinical practice with deep neural networks: shortening scan times for magnetic resonance imaging. IEEE Signal Process. Mag. 37(1), 117–127 (2020)

    Article  Google Scholar 

  25. Sosnovik, I., Moskalev, A., Smeulders, A.: DISCO: accurate discrete scale convolutions. arXiv preprint arXiv:2106.02733 (2021)

  26. Sosnovik, I., Szmaja, M., Smeulders, A.: Scale-equivariant steerable networks. arXiv preprint arXiv:1910.11093 (2019)

  27. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  28. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-net for compressive sensing MRI. Adv. Neural Inf. Process. Syst. 29 (2016)

    Google Scholar 

  29. Vasanawala, S.S., et al.: Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1039–1043 (2011)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Weiler, M., Geiger, M., Welling, M., Boomsma, W., Cohen, T.: 3D steerable CNNs: learning rotationally equivariant features in volumetric data. In: NeurIPS (2018)

    Google Scholar 

  32. Winkels, M., Cohen, T.: 3D G-CNNs for pulmonary nodule detection. ArXiv abs/1804.04656 (2018)

    Google Scholar 

  33. Worrall, D.E., Welling, M.: Deep scale-spaces: equivariance over scale. ArXiv abs/1905.11697 (2019)

    Google Scholar 

  34. Ying, L., Sheng, J.: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 57(6), 1196–1202 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

Beliz Gunel, Arda Sahiner, Shreyas Vasanawala, and John Pauly were supported by NIH R01EB009690 and NIH U01-EB029427-01. Mert Pilanci was partially supported by the National Science Foundation under grants IIS-1838179, ECCS- 2037304, DMS-2134248, and the Army Research Office. Arjun Desai and Akshay Chaudhari were supported by grants R01 AR077604, R01 EB002524, K24 AR062068, and P41 EB015891 from the NIH; the Precision Health and Integrated Diagnostics Seed Grant from Stanford University; National Science Foundation (DGE 1656518, CCF1763315, CCF1563078); DOD – National Science and Engineering Graduate Fellowship (ARO); Stanford Artificial Intelligence in Medicine and Imaging GCP grant; Stanford Human-Centered Artificial Intelligence GCP grant; Microsoft Azure through Stanford Data Science’s Cloud Resources Program; GE Healthcare and Philips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beliz Gunel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 137 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunel, B. et al. (2022). Scale-Equivariant Unrolled Neural Networks for Data-Efficient Accelerated MRI Reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics