Skip to main content

Sensor Geometry Generalization to Untrained Conditions in Quantitative Ultrasound Imaging

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Recent improvements in deep learning have brought great progress in ultrasonic lesion quantification. However, the learning-based scheme performs properly only when a certain level of similarity between train and test condition is ensured. However, real-world test condition expects diverse untrained probe geometry from various manufacturers, which undermines the credibility of learning-based ultrasonic approaches. In this paper, we present a meta-learned deformable sensor generalization network that generates consistent attenuation coefficient (AC) image regardless of the probe condition. The proposed method was assessed through numerical simulation and in-vivo breast patient measurements. The numerical simulation shows that the proposed network outperforms existing state-of-the-art domain generalization methods for the AC reconstruction under unseen probe conditions. In in-vivo studies, the proposed network provides consistent AC images irrespective of various probe conditions and demonstrates great clinical potential in differential breast cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arribas, E.M., Whitman, G.J., De, B.N.: 2016 screening breast ultrasound: where are we today? Curr. Breast Cancer Rep. 8, 221–9 (2016)

    Article  Google Scholar 

  2. Goss, S.A., Johnston, R.L., Dunn, F.: Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64, 423–457 (1978)

    Article  Google Scholar 

  3. Li, C., Duric, N., Littrup, P., Huang, L.: In vivo breast sound-speed imaging with ultrasound tomography. Ultrasound Med. Biol. 35(10), 1615–1628 (2009)

    Article  Google Scholar 

  4. Nam, K., Zagzebski, J.A., Hall, T.J.: Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter. Ultras. Imaging. 35, 46–61 (2013)

    Article  Google Scholar 

  5. Sanabria, S.J., Ozkan, E., Rominger, M., Goksel, O.: Spatial domain reconstruction for imaging speed-of-sound with pulse-echo ultrasound: simulation and in vivo study. Phys. Med. Biol. 63(21), 215015 (2018)

    Article  Google Scholar 

  6. Rau, R., Unal, O., Schweizer, D., Vishnevskiy, V., Goksel, O.: Attenuation imaging with pulse-echo ultrasound based on an acoustic reflector. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 601–609. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_67

    Chapter  Google Scholar 

  7. Feigin, M., Zwecker, M., Freedman, D., Anthony, B.W.: Detecting muscle activation using ultrasound speed of sound inversion with deep learning. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2092–2095. IEEE (2020)

    Google Scholar 

  8. Oh, S.H., Kim, M.-G., Kim, Y., Kwon, H., Bae, H.-M.: A neural framework for multi-variable lesion quantification through B-mode style transfer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 222–231. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_22

    Chapter  Google Scholar 

  9. Wang, J., Lan, C., Liu, C., Ouyang, Y., Qin, T.: Generalizing to unseen domains: a survey on domain generalization. arXiv preprint (2021). arXiv:2103.03097

  10. Ahmed, S., Kamal, U., Hassan., K.: SWE-Net: a deep learning approach for shear wave elastography and lesion segmentation using single push acoustic radiation force Ultrasonics, 110 (2021)

    Google Scholar 

  11. Shen, L., Zhao, W., Capaldi, D., Pauly, J., Xing, L.: A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. arXiv preprint arXiv:2105.11692 (2021)

  12. Oh, S., Kim, M. -G., Kim, Y., Bae, H.-M.: A learned representation for multi variable ultrasound lesion quantification. In: ISBI, pp. 1177–1181. IEEE (2021)

    Google Scholar 

  13. Mast, T.D.: Empirical relationships between acoustic parameters in human soft tissues. Acoust. Res. Lett. Online 1(37), 37–43 (2000)

    Article  Google Scholar 

  14. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE TMI (2019)

    Google Scholar 

  15. Jaderberg, M., Karen, S., Andrew, Z.: Jaderberg, M., et al.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)

    Google Scholar 

  16. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  17. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: AAAI (2018)

    Google Scholar 

  18. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: towards domain generalization using meta-regularization. In: NeurIPS, pp. 998–1008 (2018)

    Google Scholar 

  19. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Advances in Neural Information Processing Systems, pp. 950–957 (1992)

    Google Scholar 

  20. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  21. Ghifary, M., Bastiaan Kleijn, W., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2551–2559 (2015)

    Google Scholar 

  22. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. arXiv preprint arXiv:1902.00113 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Min Bae .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7185 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, S., Kim, MG., Kim, Y., Jung, G., Kwon, H., Bae, HM. (2022). Sensor Geometry Generalization to Untrained Conditions in Quantitative Ultrasound Imaging. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics