Skip to main content

Non-iterative Coarse-to-Fine Registration Based on Single-Pass Deep Cumulative Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Deformable image registration is a crucial step in medical image analysis for finding a non-linear spatial transformation between a pair of fixed and moving images. Deep registration methods based on Convolutional Neural Networks (CNNs) have been widely used as they can perform image registration in a fast and end-to-end manner. However, these methods usually have limited performance for image pairs with large deformations. Recently, iterative deep registration methods have been used to alleviate this limitation, where the transformations are iteratively learned in a coarse-to-fine manner. However, iterative methods inevitably prolong the registration runtime, and tend to learn separate image features for each iteration, which hinders the features from being leveraged to facilitate the registration at later iterations. In this study, we propose a Non-Iterative Coarse-to-finE registration Network (NICE-Net) for deformable image registration. In the NICE-Net, we propose: (i) a Single-pass Deep Cumulative Learning (SDCL) decoder that can cumulatively learn coarse-to-fine transformations within a single pass (iteration) of the network, and (ii) a Selectively-propagated Feature Learning (SFL) encoder that can learn common image features for the whole coarse-to-fine registration process and selectively propagate the features as needed. Extensive experiments on six public datasets of 3D brain Magnetic Resonance Imaging (MRI) show that our proposed NICE-Net can outperform state-of-the-art iterative deep registration methods while only requiring similar runtime to non-iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vis. Appl. 31(1–2), 1–18 (2020). https://doi.org/10.1007/s00138-020-01060-x

    Article  Google Scholar 

  2. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging. 32(7), 1153–1190 (2013)

    Google Scholar 

  3. Xiao, H., et al.: A review of deep learning-based three-dimensional medical image registration methods. Quant. Imaging Med. Surg. 11(12), 4895–4916 (2021)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Med. Image Anal. 57, 226–236 (2019)

    Article  Google Scholar 

  6. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  7. Hering, A., van Ginneken, B., Heldmann, S.: mlVIRNET: multilevel variational image registration network. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. Lecture Notes in Computer Science, vol. 11769, pp. 257–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_29

    Chapter  Google Scholar 

  8. Zhao, S., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10600–10610 (2019)

    Google Scholar 

  9. Mok, T.C.W., Chung, A.C.S.: Large deformation diffeomorphic image registration with Laplacian pyramid networks. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. LNCS, vol. 12263, pp. 211–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_21

    Chapter  Google Scholar 

  10. Shu, Y., Wang, H., Xiao, B., Bi, X., Li, W.: Medical image registration based on uncoupled learning and accumulative enhancement. In: deBruijne, M., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. LNCS, vol. 12904, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_1

    Chapter  Google Scholar 

  11. Xiaojun, H., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_43

    Chapter  Google Scholar 

  12. Meng, M., Bi, L., Fulham, M., Feng, D.D., Kim, J.: Enhancing Medical Image Registration via Appearance Adjustment Networks. arXiv preprint arXiv:2103.05213 (2021)

  13. Thórisson, K.R., Bieger, J., Li, X., Wang, P.: Cumulative learning. In: International Conference on Artificial General Intelligence, pp. 198–208. Springer, Cham (2019)

    Google Scholar 

  14. Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)

    Article  Google Scholar 

  15. Kuang, D., Schmah, T.: FAIM – a ConvNet method for unsupervised 3D medical image registration. In: Suk, H.-Il., Liu, M., Yan, P., Lian, C. (eds.) Machine Learning in Medical Imaging. LNCS, vol. 11861, pp. 646–654. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_74

    Chapter  Google Scholar 

  16. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimers Dement. 1(1), 55–66 (2005)

    Article  Google Scholar 

  17. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psych. 19(6), 659–667 (2014)

    Article  Google Scholar 

  18. Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H.: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012)

    Google Scholar 

  19. The Information eXtraction from Images (IXI) dataset. https://brain-development.org/ixi-dataset/. Accessed 19 Jan 2022

  20. Klein, A., Tourville, J.: 101 labeled brain images and a consistent human cortical labeling protocol. Front. Neurosci. 6, 171 (2012)

    Article  Google Scholar 

  21. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Google Scholar 

  22. Jenkinson, M., Smith, S.M.: A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5(2), 143–156 (2001)

    Article  Google Scholar 

  23. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  24. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  25. Kang, M., Hu, X., Huang, W., Scott, M.R., Reyes, M.: Dual-stream pyramid registration network. Med. Image Anal. 78, 102374 (2022)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Australian Research Council (ARC) grants (IC170100022 and DP200103748).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 323 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, M., Bi, L., Feng, D., Kim, J. (2022). Non-iterative Coarse-to-Fine Registration Based on Single-Pass Deep Cumulative Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13436. Springer, Cham. https://doi.org/10.1007/978-3-031-16446-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16446-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16445-3

  • Online ISBN: 978-3-031-16446-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics