Skip to main content

USPoint: Self-Supervised Interest Point Detection and Description for Ultrasound-Probe Motion Estimation During Fine-Adjustment Standard Fetal Plane Finding

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Ultrasound (US)-probe motion estimation is a fundamental problem in automated standard plane locating during obstetric US diagnosis. Most recent existing recent works employ deep neural network (DNN) to regress the probe motion. However, these deep regression-based methods leverage the DNN to overfit on the specific training data, which is naturally lack of generalization ability for the clinical application. In this paper, we are back to generalized US feature learning rather than deep parameter regression. We propose a self-supervised learned local detector and descriptor, named USPoint, for US-probe motion estimation during the fine-adjustment phase of fetal plane acquisition. Specifically, a hybrid neural architecture is designed to simultaneously extract a local feature, and further estimate the probe motion. By embedding a differentiable USPoint-based motion estimation inside the proposed network architecture, the USPoint learns the keypoint detector, scores and descriptors from motion error alone, which doesn’t require expensive human-annotation of local features. The two tasks, local feature learning and motion estimation, are jointly learned in a unified framework to enable collaborative learning with the aim of mutual benefit. To the best of our knowledge, it is the first learned local detector and descriptor tailored for the US image. Experimental evaluation on real clinical data demonstrates the resultant performance improvement on feature matching and motion estimation for potential clinical value. A video demo can be found online: https://youtu.be/JGzHuTQVlBs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)

  2. Chen, J.F., Fowlkes, J.B., Carson, P.L., Rubin, J.M.: Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997)

    Article  Google Scholar 

  3. Christiansen, P.H., Kragh, M.F., Brodskiy, Y., Karstoft, H.: Unsuperpoint: end-to-end unsupervised interest point detector and descriptor. arXiv preprint arXiv:1907.04011 (2019)

  4. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  5. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

    Google Scholar 

  6. Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Automatic probe movement guidance for freehand obstetric ultrasound. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 583–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_56

  7. Gee, A.H., Housden, R.J., Hassenpflug, P., Treece, G.M., Prager, R.W.: Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle. Med. Image Anal. 10(2), 137–149 (2006)

    Article  Google Scholar 

  8. Guo, H., Xu, S., Wood, B., Yan, P.: Sensorless freehand 3D ultrasound reconstruction via deep contextual learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 463–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_44

  9. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)

    Google Scholar 

  10. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  11. Muja, M., Lowe, D.: Flann-fast library for approximate nearest neighbors user manual. Computer Science Department, University of British Columbia, Vancouver, BC, Canada 5 (2009)

    Google Scholar 

  12. Prevost, R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 48, 187–202 (2018)

    Google Scholar 

  13. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  14. Rivaz, H., Zellars, R., Hager, G., Fichtinger, G., Boctor, E.: 9C–1 beam steering approach for speckle characterization and out-of-plane motion estimation in real tissue. In: 2007 IEEE Ultrasonics Symposium Proceedings, pp. 781–784. IEEE (2007)

    Google Scholar 

  15. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  16. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  17. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: CVPR, pp. 3302–3312. IEEE (2019)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  21. Zhao, C., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Visual-assisted probe movement guidance for obstetric ultrasound scanning using landmark retrieval. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 670–679. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_64

  22. Zhao, C., Shen, M., Sun, L., Yang, G.Z.: Generative localization with uncertainty estimation through video-CT data for bronchoscopic biopsy. IEEE Robot. Autom. Lett. 5(1), 258–265 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the ERC (ERC-ADG-2015 694581, project PULSE), the EPSRC (EP/MO13774/1, EP/R013853/1), and the NIHR Biomedical Research Centre funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2022). USPoint: Self-Supervised Interest Point Detection and Description for Ultrasound-Probe Motion Estimation During Fine-Adjustment Standard Fetal Plane Finding. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics