Abstract
Ultrasound (US)-probe motion estimation is a fundamental problem in automated standard plane locating during obstetric US diagnosis. Most recent existing recent works employ deep neural network (DNN) to regress the probe motion. However, these deep regression-based methods leverage the DNN to overfit on the specific training data, which is naturally lack of generalization ability for the clinical application. In this paper, we are back to generalized US feature learning rather than deep parameter regression. We propose a self-supervised learned local detector and descriptor, named USPoint, for US-probe motion estimation during the fine-adjustment phase of fetal plane acquisition. Specifically, a hybrid neural architecture is designed to simultaneously extract a local feature, and further estimate the probe motion. By embedding a differentiable USPoint-based motion estimation inside the proposed network architecture, the USPoint learns the keypoint detector, scores and descriptors from motion error alone, which doesn’t require expensive human-annotation of local features. The two tasks, local feature learning and motion estimation, are jointly learned in a unified framework to enable collaborative learning with the aim of mutual benefit. To the best of our knowledge, it is the first learned local detector and descriptor tailored for the US image. Experimental evaluation on real clinical data demonstrates the resultant performance improvement on feature matching and motion estimation for potential clinical value. A video demo can be found online: https://youtu.be/JGzHuTQVlBs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Battaglia, P.W., et al.: Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261 (2018)
Chen, J.F., Fowlkes, J.B., Carson, P.L., Rubin, J.M.: Determination of scan-plane motion using speckle decorrelation: theoretical considerations and initial test. Int. J. Imaging Syst. Technol. 8(1), 38–44 (1997)
Christiansen, P.H., Kragh, M.F., Brodskiy, Y., Karstoft, H.: Unsuperpoint: end-to-end unsupervised interest point detector and descriptor. arXiv preprint arXiv:1907.04011 (2019)
Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)
DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018
Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Automatic probe movement guidance for freehand obstetric ultrasound. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 583–592. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_56
Gee, A.H., Housden, R.J., Hassenpflug, P., Treece, G.M., Prager, R.W.: Sensorless freehand 3D ultrasound in real tissue: speckle decorrelation without fully developed speckle. Med. Image Anal. 10(2), 137–149 (2006)
Guo, H., Xu, S., Wood, B., Yan, P.: Sensorless freehand 3D ultrasound reconstruction via deep contextual learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 463–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_44
Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946 (2015)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)
Muja, M., Lowe, D.: Flann-fast library for approximate nearest neighbors user manual. Computer Science Department, University of British Columbia, Vancouver, BC, Canada 5 (2009)
Prevost, R., et al.: 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 48, 187–202 (2018)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
Rivaz, H., Zellars, R., Hager, G., Fichtinger, G., Boctor, E.: 9C–1 beam steering approach for speckle characterization and out-of-plane motion estimation in real tissue. In: 2007 IEEE Ultrasonics Symposium Proceedings, pp. 781–784. IEEE (2007)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: CVPR, pp. 3302–3312. IEEE (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Zhao, C., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A.: Visual-assisted probe movement guidance for obstetric ultrasound scanning using landmark retrieval. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12908, pp. 670–679. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87237-3_64
Zhao, C., Shen, M., Sun, L., Yang, G.Z.: Generative localization with uncertainty estimation through video-CT data for bronchoscopic biopsy. IEEE Robot. Autom. Lett. 5(1), 258–265 (2019)
Acknowledgments
We acknowledge the ERC (ERC-ADG-2015 694581, project PULSE), the EPSRC (EP/MO13774/1, EP/R013853/1), and the NIHR Biomedical Research Centre funding scheme.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, C., Droste, R., Drukker, L., Papageorghiou, A.T., Noble, J.A. (2022). USPoint: Self-Supervised Interest Point Detection and Description for Ultrasound-Probe Motion Estimation During Fine-Adjustment Standard Fetal Plane Finding. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-16449-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16448-4
Online ISBN: 978-3-031-16449-1
eBook Packages: Computer ScienceComputer Science (R0)