Skip to main content

Identifying Phenotypic Concepts Discriminating Molecular Breast Cancer Sub-Types

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Molecular breast cancer sub-types derived from core-biopsy are central for individual outcome prediction and treatment decisions. Determining sub-types by non-invasive imaging procedures would benefit early assessment. Furthermore, identifying phenotypic traits of sub-types may inform our understanding of disease processes as we become able to monitor them longitudinally. We propose a model to learn phenotypic appearance concepts of four molecular sub-types of breast cancer. A deep neural network classification model predicts sub-types from multi-modal, multi-parametric imaging data. Intermediate representations of the visual information are clustered, and clusters are scored based on testing with concept activation vectors to assess their contribution to correctly discriminating sub-types. The proposed model can predict sub-types with competitive accuracy from simultaneous \({}^{18}\)F-FDG PET/MRI, and identifies visual traits in the form of shared and discriminating phenotypic concepts associated with the sub-types.

This work was supported by the Vienna Science and Technology Fund (WWTF, LS19-018, LS20-065), the Austrian Research Fund (FWF, P 35189), a CCC Research Grant, and a European Union’s Horizon 2020 research grant (No. 667211).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Z., Bei, Y., Rudin, C.: Concept whitening for interpretable image recognition. Nat. Mach. Intell. 2, 1–11 (2020)

    Article  Google Scholar 

  2. Clough, J., Oksuz, I., Puyol Anton, E., Ruijsink, B., King, A., Schnabel, J.: Global and local interpretability for cardiac MRI classification (2019). https://arxiv.org/abs/1906.06188

  3. Delso, G., et al.: Performance measurements of the siemens MMR integrated whole-body PET/MR scanner. J. Nucl. Med. 52(12), 1914–1922 (2011)

    Article  Google Scholar 

  4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  5. Fragomeni, S.M., Sciallis, A., Jeruss, J.S.: Molecular subtypes and local-regional control of breast cancer. Surg. Oncol. Clin. 27(1), 95–120 (2018)

    Article  Google Scholar 

  6. Gamble, P., et al.: Determining breast cancer biomarker status and associated morphological features using deep learning. Commun. Med. 1 (2021)

    Google Scholar 

  7. Ghassemi, M., Oakden-Rayner, L., Beam, A.L.: The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit. Health 3(11), e745–e750 (2021)

    Article  Google Scholar 

  8. Ghorbani, A., Wexler, J., Zou, J., Kim, B.: Towards automatic concept-based explanations. In: Advances in Neural Information Processing Systems, vol. 32, pp. 9277–9286 (2019)

    Google Scholar 

  9. Graziani, M., Andrearczyk, V., Marchand-Maillet, S., Müller, H.: Concept attribution: explaining CNN decisions to physicians. Comput. Biol. Med. 123 (2020)

    Google Scholar 

  10. Ha, R., et al.: Predicting breast cancer molecular subtype with MRI dataset utilizing convolutional neural network algorithm. J. Digit. Imaging 32(2), 276–282 (2019)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, Y., et al.: Multi-parametric MRI-based radiomics models for predicting molecular subtype and androgen receptor expression in breast cancer. Front. Oncol. 11 (2021)

    Google Scholar 

  13. Janik, A., Dodd, J., Ifrim, G., Sankaran, K., Curran, K.: Interpretability of a deep learning model in the application of cardiac MRI segmentation with an ACDC challenge dataset. In: Proceedings of SPIE - The International Society for Optical Engineering (2021)

    Google Scholar 

  14. Ketchen, D.J., Shook, C.L.: The application of cluster analysis in strategic management research: an analysis and critique. Strateg. Manag. J. 17(6), 441–458 (1996)

    Article  Google Scholar 

  15. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677. PMLR (2018)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Lee, J.R., Kim, S., Park, I., Eo, T., Hwang, D.: Relevance-CAM: your model already knows where to look. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14944–14953 (2021)

    Google Scholar 

  18. Nielsen, T.O., et al.: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10(16), 5367–5374 (2004)

    Article  Google Scholar 

  19. Pereira, S., Meier, R., Alves, V., Reyes, M., Silva, C.A.: Automatic brain tumor grading from MRI data using convolutional neural networks and quality assessment. In: Stoyanov, D., et al. (eds.) MLCN/DLF/IMIMIC -2018. LNCS, vol. 11038, pp. 106–114. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02628-8_12

    Chapter  Google Scholar 

  20. Pinker, K., et al.: Improved differentiation of benign and malignant breast tumors with multiparametric 18fluorodeoxyglucose positron emission tomography magnetic resonance imaging: a feasibility study. Clin. Cancer Res. 20(13), 3540–3549 (2014)

    Article  Google Scholar 

  21. Reyes, M., et al.: On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiol. Artif. Intell. 2(3), e190043 (2020)

    Google Scholar 

  22. Romeo, V., et al.: AI-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 1–13 (2021)

    Google Scholar 

  23. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  24. Son, J., Lee, S.E., Kim, E.K., Kim, S.: Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  25. Sørlie, T., et al.: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. 98(19), 10869–10874 (2001)

    Article  Google Scholar 

  26. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning, pp. 3319–3328. PMLR (2017)

    Google Scholar 

  27. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  28. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)

    Google Scholar 

  29. Zhang, Y., et al.: Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Eur. Radiol. 31(4), 2559–2567 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Fürböck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fürböck, C., Perkonigg, M., Helbich, T., Pinker, K., Romeo, V., Langs, G. (2022). Identifying Phenotypic Concepts Discriminating Molecular Breast Cancer Sub-Types. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics