Skip to main content

Opportunistic Incidence Prediction of Multiple Chronic Diseases from Abdominal CT Imaging Using Multi-task Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Opportunistic computed tomography (CT) analysis is a paradigm where CT scans that have already been acquired for routine clinical questions are reanalyzed for disease prognostication, typically aided by machine learning. While such techniques for opportunistic use of abdominal CT scans have been implemented for assessing the risk of a handful of individual disorders, their prognostic power in simultaneously assessing multiple chronic disorders has not yet been evaluated. In this retrospective study of 9,154 patients, we demonstrate that we can effectively assess 5-year incidence of chronic kidney disease (CKD), diabetes mellitus (DM), hypertension (HT), ischemic heart disease (IHD), and osteoporosis (OST) using single already-acquired abdominal CT scans. We demonstrate that a shared multi-planar CT input, consisting of an axial CT slice occurring at the L3 vertebral level, as well as carefully selected sagittal and coronal slices, enables accurate future disease incidence prediction. Furthermore, we demonstrate that casting this shared CT input into a multi-task approach is particularly valuable in the low-label regime. With just 10% of labels for our diseases of interest, we recover nearly 99% of fully supervised AUROC performance, representing an improvement over single-task learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartbook and charts. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/Chronic-Conditions/Chartbook_Charts

  2. Noncommunicable diseases. https://www.who.int/health-topics/noncommunicable-diseases

  3. Chronic kidney disease in the united states, 2021, March 2021. https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html

  4. Facts about hypertension, September 2021. https://www.cdc.gov/bloodpressure/

  5. Heart disease facts, February 2022. https://www.cdc.gov/heartdisease/facts.htm

  6. National diabetes statistics report, January 2022. https://www.cdc.gov/diabetes/data/statistics-report/index.html

  7. Bangalore, S., Maron, D.J., Hochman, J.S.: Evidence-based management of stable ischemic heart disease. JAMA 314(18), 1917 (2015). https://doi.org/10.1001/jama.2015.11219

    Article  Google Scholar 

  8. Boutin, R.D., Houston, D.K., Chaudhari, A.S., Willis, M.H., Fausett, C.L., Lenchik, L.: Imaging of sarcopenia. Radiol. Clin. North Am. 60(4), 575–582 (2022). https://doi.org/10.1016/j.rcl.2022.03.001

    Article  Google Scholar 

  9. Boutin, R.D., Lenchik, L.: Value-added opportunistic CT: insights into osteoporosis and sarcopenia. Am. J. Roentgenol. 215(3), 582–594 (2020). https://doi.org/10.2214/ajr.20.22874

    Article  Google Scholar 

  10. Charlson, M.E., Charlson, R.E., Peterson, J.C., Marinopoulos, S.S., Briggs, W.M., Hollenberg, J.P.: The Charlson comorbidity index is adapted to predict costs of chronic disease in primary care patients. J. Clin. Epidemiol. 61(12), 1234–1240 (2008). https://doi.org/10.1016/j.jclinepi.2008.01.006

    Article  Google Scholar 

  11. Clynes, M.A., Harvey, N.C., Curtis, E.M., Fuggle, N.R., Dennison, E.M., Cooper, C.: The epidemiology of osteoporosis. Br. Med. Bull. (2020). https://doi.org/10.1093/bmb/ldaa005

    Article  Google Scholar 

  12. Cohen, J.P., et al.: Gifsplanation via latent shift: a simple autoencoder approach to progressive exaggeration on chest x-rays. CoRR abs/2102.09475 (2021). https://arxiv.org/abs/2102.09475

  13. Dagan, N., et al.: Automated opportunistic osteoporotic fracture risk assessment using computed tomography scans to aid in FRAX underutilization. Nat. Med. 26(1), 77–82 (2020). https://doi.org/10.1038/s41591-019-0720-z

    Article  MathSciNet  Google Scholar 

  14. Rijken, M., Van Kerkhof, M., Dekker, J., Schellevis, F.G.: Comorbidity of chronic diseases: effects of disease pairs on physical and mental functioning. https://pubmed.ncbi.nlm.nih.gov/15789940/

  15. Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task groupings for multi-task learning. CoRR abs/2109.04617 (2021). https://arxiv.org/abs/2109.04617

  16. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1126–1135. PMLR, 06–11 August 2017. https://proceedings.mlr.press/v70/finn17a.html

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  18. Higgins, T.: Hba1c for screening and diagnosis of diabetes mellitus. Endocrine 43(2), 266–273 (2012). https://doi.org/10.1007/s12020-012-9768-y

    Article  Google Scholar 

  19. Kanavati, F., Islam, S., Arain, Z., Aboagye, E.O., Rockall, A.: Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment (2020)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). https://doi.org/10.48550/ARXIV.1412.6980, https://arxiv.org/abs/1412.6980

  21. LaVallee, L.A., Scott, M.A., Hulkower, S.D.: Challenges in the screening and management of osteoporosis. North Carol. Med. J. 77(6), 416–419 (2016). https://doi.org/10.18043/ncm.77.6.416

  22. Liu, C.T., et al.: Visceral adipose tissue is associated with bone microarchitecture in the Framingham osteoporosis study. J. Bone Mineral Res. 32(1), 143–150 (2017). https://doi.org/10.1002/jbmr.2931, https://asbmr.onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.2931

  23. Manzano, W., Lenchik, L., Chaudhari, A.S., Yao, L., Gupta, S., Boutin, R.D.: Sarcopenia in rheumatic disorders: what the radiologist and rheumatologist should know. Skeletal Radiol. 51(3), 513–524 (2021). https://doi.org/10.1007/s00256-021-03863-z

    Article  Google Scholar 

  24. Martin, A.B., Hartman, M., Lassman, D., Catlin, A.: National health care spending in 2019: steady growth for the fourth consecutive year. Health Aff. 40(1), 14–24 (2021). https://doi.org/10.1377/hlthaff.2020.02022

    Article  Google Scholar 

  25. Mettler, F.A., et al.: Patient exposure from radiologic and nuclear medicine procedures in the united states: procedure volume and effective dose for the period 2006–2016 (2020)

    Google Scholar 

  26. Oecd. https://stats.oecd.org/index.aspx?queryid=30184

  27. Pfohl, S., Marafino, B.J., Coulet, A., Rodriguez, F., Palaniappan, L., Shah, N.H.: Creating fair models of atherosclerotic cardiovascular disease risk. CoRR abs/1809.04663 (2018). http://arxiv.org/abs/1809.04663

  28. Pickhardt, P.J., et al.: Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit. Health 2(4) (2020). https://doi.org/10.1016/s2589-7500(20)30025-x

  29. Reginster, J.Y., Beaudart, C., Buckinx, F., Bruyère, O.: Osteoporosis and sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 19(1), 31–36 (2016). https://doi.org/10.1097/mco.0000000000000230

    Article  Google Scholar 

  30. Standley, T., Zamir, A.R., Chen, D., Guibas, L.J., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? CoRR abs/1905.07553 (2019). http://arxiv.org/abs/1905.07553

  31. Zambrano Chaves, J.M., et al.: Opportunistic assessment of ischemic heart disease risk using abdominopelvic computed tomography and medical record data: a multimodal explainable artificial intelligence approach. medRxiv (2021). https://doi.org/10.1101/2021.01.23.21250197, https://www.medrxiv.org/content/early/2021/01/26/2021.01.23.21250197

  32. Zamir, A.R., Sax, A., Shen, W.B., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. CoRR abs/1804.08328 (2018). http://arxiv.org/abs/1804.08328

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Blankemeier .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 472 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blankemeier, L. et al. (2022). Opportunistic Incidence Prediction of Multiple Chronic Diseases from Abdominal CT Imaging Using Multi-task Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics