Skip to main content

Deep Laparoscopic Stereo Matching with Transformers

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

The self-attention mechanism, successfully employed with the transformer structure is shown promise in many computer vision tasks including image recognition, and object detection. Despite the surge, the use of the transformer for the problem of stereo matching remains relatively unexplored. In this paper, we comprehensively investigate the use of the transformer for the problem of stereo matching, especially for laparoscopic videos, and propose a new hybrid deep stereo matching framework (HybridStereoNet) that combines the best of the CNN and the transformer in a unified design. To be specific, we investigate several ways to introduce transformers to volumetric stereo matching pipelines by analyzing the loss landscape of the designs and in-domain/cross-domain accuracy. Our analysis suggests that employing transformers for feature representation learning, while using CNNs for cost aggregation will lead to faster convergence, higher accuracy and better generalization than other options. Our extensive experiments on Sceneflow, SCARED2019 and dVPN datasets demonstrate the superior performance of our HybridStereoNet.

X. Cheng and Y. Zhong—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allan, M., et al.: Stereo correspondence and reconstruction of endoscopic data challenge. arXiv preprint arXiv:2101.01133 (2021)

  2. Cartucho, J., Tukra, S., Li, Y., S. Elson, D., Giannarou, S.: Visionblender: a tool to efficiently generate computer vision datasets for robotic surgery. CMBBE Imaging Vis. 9(4), 331–338 (2021)

    Google Scholar 

  3. Chaudhari, P., et al.: Entropy-SGD: biasing gradient descent into wide valleys. J. Stat. Mech. Theory Exp. 2019(12), 124018 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cheng, X., Zhong, Y., Dai, Y., Ji, P., Li, H.: Noise-aware unsupervised deep lidar-stereo fusion. In: CVPR (2019)

    Google Scholar 

  5. Cheng, X., et al.: Hierarchical neural architecture search for deep stereo matching. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  6. Chong, N., et al.: Virtual reality application for laparoscope in clinical surgery based on siamese network and census transformation. In: Su, R., Zhang, Y.-D., Liu, H. (eds.) MICAD 2021. LNEE, vol. 784, pp. 59–70. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-3880-0_7

    Chapter  Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  8. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  9. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  10. Huang, B., et al.: Self-supervised generative adversarial network for depth estimation in laparoscopic images. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 227–237. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_22

    Chapter  Google Scholar 

  11. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: Generalization gap and sharp minima. ICLR (2017)

    Google Scholar 

  12. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural nets. NeurIPS 31 (2018)

    Google Scholar 

  13. Li, Z., et al.: Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers. In: ICCV, pp. 6197–6206, October 2021

    Google Scholar 

  14. Lipson, L., Teed, Z., Deng, J.: RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching. arXiv preprint arXiv:2109.07547 (2021)

  15. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  16. Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)

  17. Long, Y., et al.: E-DSSR: efficient dynamic surgical scene reconstruction with transformer-based stereoscopic depth perception. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 415–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_40

    Chapter  Google Scholar 

  18. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2016)

    Google Scholar 

  19. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  20. Nicolau, S., Soler, L., Mutter, D., Marescaux, J.: Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 20(3), 189–201 (2011)

    Article  Google Scholar 

  21. Overley, S.C., Cho, S.K., Mehta, A.I., Arnold, P.M.: Navigation and robotics in spinal surgery: where are we now? Neurosurgery 80(3S), S86–S99 (2017)

    Article  Google Scholar 

  22. Qin, Z., et al.: Cosformer: Rethinking softmax in attention. In: ICLR (2022)

    Google Scholar 

  23. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

  24. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  25. Sun, W., Qin, Z., Deng, H., Wang, J., Zhang, Y., Zhang, K., Barnes, N., Birchfield, S., Kong, L., Zhong, Y.: Vicinity vision transformer. In: arxiv. p. 2206.10552 (2022)

    Google Scholar 

  26. Wang, J., et al.: Deep two-view structure-from-motion revisited. In: CVPR, pp. 8953–8962, June 2021

    Google Scholar 

  27. Wang, J., Zhong, Y., Dai, Y., Zhang, K., Ji, P., Li, H.: Displacement-invariant matching cost learning for accurate optical flow estimation. In: NeurIPS (2020)

    Google Scholar 

  28. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV, pp. 568–578 (2021)

    Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)

    Google Scholar 

  30. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49

    Chapter  Google Scholar 

  31. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.Z.: Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. arXiv preprint arXiv:1705.08260 (2017)

  32. Zhong, Y., Dai, Y., Li, H.: Self-supervised learning for stereo matching with self-improving ability (2017)

    Google Scholar 

  33. Zhong, Y., Dai, Y., Li, H.: 3d geometry-aware semantic labeling of outdoor street scenes. In: ICPR (2018)

    Google Scholar 

  34. Zhong, Y., Dai, Y., Li, H.: Stereo computation for a single mixture image. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 441–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_27

    Chapter  Google Scholar 

  35. Zhong, Y., Ji, P., Wang, J., Dai, Y., Li, H.: Unsupervised deep epipolar flow for stationary or dynamic scenes. In: CVPR (2019)

    Google Scholar 

  36. Zhong, Y., Li, H., Dai, Y.: Open-world stereo video matching with deep RNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 104–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_7

    Chapter  Google Scholar 

  37. Zhong, Y., et al.: Displacement-invariant cost computation for stereo matching. In: IJCV, March 2022

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongyuan Ge .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5088 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Zhong, Y., Harandi, M., Drummond, T., Wang, Z., Ge, Z. (2022). Deep Laparoscopic Stereo Matching with Transformers. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics