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Abstract. The self-attention mechanism, successfully employed with
the transformer structure is shown promise in many computer vision
tasks including image recognition, and object detection. Despite the
surge, the use of the transformer for the problem of stereo matching
remains relatively unexplored. In this paper, we comprehensively inves-
tigate the use of the transformer for the problem of stereo matching,
especially for laparoscopic videos, and propose a new hybrid deep stereo
matching framework (HybridStereoNet) that combines the best of the
CNN and the transformer in a unified design. To be specific, we in-
vestigate several ways to introduce transformers to volumetric stereo
matching pipelines by analyzing the loss landscape of the designs and
in-domain/cross-domain accuracy. Our analysis suggests that employ-
ing transformers for feature representation learning, while using CNNs
for cost aggregation will lead to faster convergence, higher accuracy and
better generalization than other options. Our extensive experiments on
Sceneflow, SCARED2019 and dVPN datasets demonstrate the superior
performance of our HybridStereoNet.

Keywords: Stereo Matching · Transformer · Laparoscopic video

1 Introduction

3D information and stereo vision are important for robotic-assisted minimally
invasive surgeries (MIS) [2, 17]. Given the success of modern deep learning sys-
tems [4, 5, 34, 36, 37] on natural stereo pairs, a promising next challenge is sur-
gical stereo vision, e.g., laparoscopic and endoscopic images. It has received
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Fig. 1. The overall pipeline of the HybridStereoNet network.

substantial prior interest as its promise for many medical down-streaming tasks
such as surgical robot navigation [21], 3D registration [2,17], augmented reality
(AR) [20,33] and virtual reality (VR) [6].

In recent years, we have witnessed a substantial progress of deep stereo
matching in natural images such as KITTI 2015, Middlebury and ETH3D. Sev-
eral weaknesses of conventional stereo matching algorithms (e.g., handling oc-
clusion [23], and textureless areas [19]) have been largely alleviated through deep
convolutional networks [5,14,26,27,35] and large training data. However, recov-
ering dense depth maps for laparoscopic stereo videos is still a non-trivial task.
First, the textureless problem in laparoscopic stereo images is much severe than
natural images. Greater demands were placed on the stereo matching algorithms
to handle large textureless areas. Second, there are only few laparoscopic stereo
datasets for training a stereo network due the hardness of retrieving the ground
truth. Lack of large-scale training data requires the network to be either an ef-
fective learner (i.e., to be able to learn stereo matching from few samples) or a
quick adapter that can adjust to the new scene with few samples. Also, there
is a large domain gap between natural images and medical images. In order to
be a quick adapter, the network needs superior generalisation ability to mitigate
the gap.

The transformer has become the horsepower of neural architectures recently,
due to its generalization ability [15,25,28]. Transformers have been successfully
applied in natural language processing [22] and high-level computer vision tasks,
e.g., image classification, semantic segmentation and object detection. Yet, its
application to low level vision is yet to be proven, e.g., the performance of
STTR [13] is far behind convolution-based methods in stereo matching. In this
paper, we investigate the use of transformers for deep stereo matching in laparo-
scopic stereo videos. We will show that by using transformers to extract features,
while employing convolutions for aggregation of matching cost, a deep model
with higher domain specific and cross domain performances can be achieved.

Following the volumetric deep stereo matching pipeline in LEAStereo [5],
our method consists of a feature net, a 4D cost volume, a matching net and a
projection layer. The feature net and the matching net are the only two mod-
ules that contain trainable parameters. We substitute these modules with our

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://vision.middlebury.edu/stereo/eval3/
https://www.eth3d.net/overview
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Fig. 2. The architecture of our transformer-based TFeatureNet and TMatchNet.

designed transformer-based structure and compare the accuracy, generalization
ability, and the loss landscapes to analyze the behavior of the transformer for
the stereo matching task. The insights obtained from those analyses have led us
to propose a new hybrid architecture for laparoscopic stereo videos that achieves
better performance than both convolution-based methods and pure transformer-
based methods. Specifically, we find that the transformers tend to find flatter
local minima while the CNNs can find a lower one but sharper. By using trans-
formers as the feature extractor, and CNNs for cost aggregation, the network
can find a local minima both lower and flatter than pure CNN-based methods,
which leads to better generalization ability. Thanks to the global field of view
of transformers, our HybridStereoNet has better textureless handling capability
as well.

2 Method

In this section, we first illustrate our hybrid stereo matching architecture and
then provide a detailed analysis of transformers in stereo matching networks.
Our design is inspired by LEAStereo which is an state-of-the-art model for the
natural stereo matching task. For the sake of discussion, we denote the feature
net in LEAStereo [5] as CFeatureNet, and the matching net as CMatchNet.

2.1 The HybridStereoNet

Our proposed HybridStereoNet architecture is shown in Fig 1. We adapt the
standard volumetric stereo matching pipeline that consists of a feature net to ex-
tract features from input stereo images, a 4D feature volume that is constructed
by concatenating features from stereo image pairs through epipolar lines [32], a
matching net that regularizes the 4D volume to generate a 3D cost volume, and
a projection layer to project the 3D cost volume to a 2D disparity map. In this
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Fig. 3. The overall pipeline of variant networks. We follow the feature extraction – 4D
feature volume construction - dense matching pipeline for deep stereo matching. The
variants change the FeatureNet and Matching Net with either transformer or CNNs.
The gray box represents 4D cost volume.

pipeline, only the feature net and the matching net contain trainable parame-
ters. We replace both networks with transformer-based structures to make them
suitable for laparoscopic stereo images.

We show our transformer-based feature net (TFeatureNet) in Fig. 2 (a) and
matching net (TMatchNet) in Fig. 2 (b). For a fair comparison with the con-
volutional structure of the LEAStereo [5], we use the same number of layers L
for our TFeatureNet and TMatchNet as in the LEAStereo, i.e., LF = 6 for the
TFeatureNet and LM = 12 for the TMatchNet. The 4D feature volume is also
built in 1/3 resolution.
TFeatureNet is a Siamese network with shared weights to extract features from
input stereo pairs of size H ×W . We adapt the same patching technique as in
ViT [7] and split the image into N non-overlapping patches before feeding them
to a vision transformer. We set the patch size to 3 × 3 to obtain H

3 × W
3 tokens

and thus ensure the cost volume built in 1/3 resolution. A linear embedding
layer is applied on the raw-valued features and project them to a C dimensional
space. We set the embedding feature channel to 32. We empirically select the
swin transformer block [15] as our 2D transformer block.
TMatchNet is a U-shaped encoder-decoder network with 3D transformers. The
encoder is a three-stage down-sampling architecture with stride of 2. In contrast,
the decoder is a three-stage up-sampling architecture as shown in Fig 2 (b).
Similar to the TFeatureNet, we use a 3D Patch Partitioning layer to split the 4D
volume H ′×W ′×D′×C into N non-overlapping 3D patches and feed them into
a 3D transformer. Unlike previous 3D transformers [16] that keep the dimension
D unchanged when down-sampling the spatial dimensions H,W , we change D
accordingly with the stride to enforce the correct geometrical constraints.

We compare the functionality of transformers in feature extraction and cost
aggregation. As we will show soon, we find that transformers are good for feature
representation learning while convolutions are good for cost aggregation. There-
fore, in our HybridStereoNet, we use our TFeatureNet as the feature extractor
and CMatchNet for the cost aggregation. We provide a detailed comparsion and
analysis in the following section.

2.2 Analyzing transformer in laparoscopic stereo

To integrate the transformer in the volumetric stereo pipeline, we have three op-
tions as shown in Fig 3. Type I (HybridStereoNet): TFeatureNet with CMatch-
Net; Type II: CFeatureNet with TMatchNet; and Type III: TFeatureNet with
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Fig. 4. Loss Landscape Visualization on SCARED2019 dataset. 3D surfaces of the
gradient variance from HybridStereoNet and its variants on SceneFlow. The two axes
mean two random directions with filter-wise normalization. The height of the surface
indicates the value of the gradient variance.

TMatchNet. In this section, we investigate these options in terms of loss land-
scapes, projected learning trajectories, in-domain/cross-domain accuracy, and
texture-less handling capabilities in laparoscopic stereo.

Loss landscape. We visualize the loss landscape on the SCARED2019 dataset
for types described above along with LEAStereo using the random direction
approach [12] in Fig 4. The plotting details can be found in the supplemental
material. The visualization suggests that Type II and Type III tend to find a
flatter loss landscape but with a higher local minima. Compared with LEAStereo,
the landscape of the HybridStereoNet shares a similar local minima but is flatter,
which leads to better cross-domain performance [3, 11].

Projected learning trajectory. We also compare the convergence curve of
each type with the projected learning trajectory [12]. Fig. 5 shows the learning
trajectories along the contours of loss surfaces. Let θi denote model parameters
at epoch i. The final parameters of the model after n epochs of training are
shown by θn. Given n training epochs, we can apply PCA [24] to the matrix
M = [θ0−θn; · · · ; θn−1−θn], and then select the two most explanatory directions.
This enables us to visualize the optimizer trajectory (blue dots in Fig. 5) and
loss surfaces along PCA directions. On each axis, we measure the amount of
variation in the descent path captured by that PCA direction. Note that the
loss landscape dynamically changes during training and we only present the
“local” landscape around the final solution.
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Fig. 6. Accuracy comparison for our proposed variants. (a) In-domain results
on SceneFlow dataset. (b) Cross domain results on SCARED2019 dataset.

Table 1. Memory footprint for the proposed variant networks.

Method LeaStereo Type II Type III HybridStereoNet
Params [M] 1.81 9.54 9.62 1.89
Flops [M] 3713.53 4144.85 811.68 380.01
Runtime [s] 0.30 0.48 0.50 0.32

As we can see from the Fig. 5, the Type II variant misses the local minima;
Type III directly heads to a local minima after circling around the loss landscape
in its first few epochs. It prohibits the network from finding a lower local minima.
The LEAStereo and our HybridStereoNet both find some lower local minimas
but the HybridStereoNet uses a sharper descending pathway on the loss land-
scape and therefore leads to a lower local minima. We use the SGD optimizer
and the same training setting with LEAStereo [5] for side-by-side comparison.
Accuracy. In Fig 6, we compare the in-domain and cross-domain accuracy of
all types for the first several epochs. All of these variants are trained on a large
nature scene synthetic stereo dataset called SceneFlow [18] with over 30k stereo
pairs. For in-domain performance, we plot the validation end point error (EPE)
on the SceneFlow dataset in Fig 6 (a). The HybridStereoNet consistently achieves
low error rates than all the other variants. For the cross-domain performance,
we directly test the trained models on the SCARED2019 laparoscopic stereo
dataset and plot the EPE in Fig 6 (b). Again, the HybridStereoNet achieves
lower cross-domain error rates in most epochs.
Memory footprint. We provide details of four variants regarding the running
time, and memory footprint in Table 1, which were tested on a Quadro GV100
with the input size 504 × 840. We keep relatively similar number of learnable
parameters to make a fair comparison.

3 Experiments

3.1 Datasets

We evaluate our HybridStereoNet on two public laparoscopic stereo datasets:
the SCARED2019 dataset [1] and the dVPN dataset [31].
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Table 2. The mean absolute depth error for the SCARED2019 Test-Original set (unit:
mm). Each test set containing 5 keyframes, denoted as kfn, n ∈ [1, 5]. Note that our
method and STTR are not fine-tuned on the target dataset. The lower the better.

Test Set 1 Test Set 2

Method kf1 kf2 kf3 kf4 kf5 Avg. kf1 kf2 kf3 kf4 kf5 Avg.

S
u
p

e
rv

is
e
d

Lalith Sharan [1] 30.63 46.51 45.79 38.99 53.23 43.03 35.46 50.09 25.24 62.37 70.45 48.72
Xiaohong Li [1] 34.42 20.66 17.84 27.92 13.00 22.77 24.58 16.80 29.92 11.37 19.93 20.52
Huoling Luo [1] 29.68 16.36 13.71 22.42 15.43 19.52 20.83 11.27 35.74 8.26 14.97 18.21
Zhu Zhanshi [1] 14.64 7.77 7.03 7.36 11.22 9.60 14.41 12.55 16.30 27.87 34.86 21.20
Wenyao Xia [1] 5.70 7.18 6.98 8.66 5.13 6.73 13.80 6.85 13.10 5.70 7.73 9.44
Trevor Zeffiro [1] 7.91 2.97 1.71 2.52 2.91 3.60 5.39 1.67 4.34 3.18 2.79 3.47
Congcong Wang [1] 6.30 2.15 3.41 3.86 4.80 4.10 6.57 2.56 6.72 4.34 1.19 4.28
J.C. Rosenthal [1] 8.25 3.36 2.21 2.03 1.33 3.44 8.26 2.29 7.04 2.22 0.42 4.05
D.P. 1 [1] 7.73 2.07 1.94 2.63 0.62 3.00 4.85 0.65 1.62 0.77 0.41 1.67
D.P. 2 [1] 7.41 2.03 1.92 2.75 0.65 2.95 4.78 1.19 3.34 1.82 0.36 2.30
STTR [13] 9.24 4.42 2.67 2.03 2.36 4.14 7.42 7.40 3.95 7.83 2.93 5.91
HybridStereoNet 7.96 2.31 2.23 3.03 1.01 3.31 4.57 1.39 3.06 2.21 0.52 2.35

SCARED2019 is released during the Endovis challenge at MICCAI 2019, in-
cluding 7 training subsets and 2 test subsets captured by a da Vinci Xi surgical
robot. The original dataset only provides the raw video data, the depth data
of each key frame and corresponding camera intrinsic parameters. We perform
additional dataset curation to make it suitable for stereo matching. After cura-
tion, the SCARED2019 contains 17206 stereo pairs for training and 5907 pairs
for testing. We use the official code to assess the mean absolute depth error on
all the subsequent frames provided by [1], named Test-Original.

However, as pointed by STTR [13], the depth of following frames are inter-
polated by forwarding kinematics information of the point cloud. This would
lead to the synchronization issues and kinematics offsets, resulting in inaccurate
depth values for subsequent frames. Following STTR [13], we further collect the
first frame of each video and build our Test-19 set, which subset consists of 19
images of resolution 1080 × 1024 with the maximum disparity of 263 pixels. The
left and right 100 pixels were cropped due to invalidity after rectification. We
further provide a complete one-key evaluation toolbox for disparity evaluation.
dVPN is provided by Hamlyn Centre Laparoscopic, with 34320 pairs of rectified
stereo images for training and 14382 pairs for testing. There is no ground truth
depth for these frames. To compare the performance of our model with other
methods, we use the image warping accuracy [32] as our evaluation metrics,
i.e., Structural Similarity Index Measure (SSIM) [29], and Peak-Signal-to-Noise
Ratio (PSNR) [9]. Note that for a fair comparison, we exclude self-supervised
methods in our comparison as they directly optimize the disparity with image
warping losses [32].

3.2 Implementation

We implemented all the architectures in Pytorch. A random crop with size
336 × 336 is the only data argumentation technique used in this work. We use
the SGD optimizer with momentum 0.9, cosine learning rate that decays from
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Table 3. Quantitative results on the Test-19 set (evaluated on all pixels). We compare
our method with various state-of-the-art methods, by bad pixel ratio disparity errors.

Methods EPE [px] ↓ RMSE [px] ↓ bad 2.0 [%] ↓ bad 3.0 [%] ↓ bad 5.0 [%] ↓
STTR [13] 6.1869 20.4903 8.4266 8.0428 7.5234
LEAStereo [5] 1.5224 4.1135 4.5251 3.6580 2.1338
HybridStereoNet 1.4096 4.1336 4.1859 3.4061 2.0125

Input image GT STTR [13] LEAStereo [10] HybridStereoNet

Fig. 7. Qualitative results with bad 3.0 value on the Test-19 set. Our model predicts
dense fine-grained details even for occlusion areas.

0.025 to 0.001, and weight decay 0.0003. Our pretrained models on SceneFlow
are conduced on two Quadro GV100 GPUs. Due to the limitation of public la-
paroscopic data and the ground truth, we train the proposed variant models on a
synthetic dataset, SceneFlow [18], which has per-pixel ground truth disparities.
It contains 35,454 training and 4,370 testing rectified image pairs with a typical
resolution of 540 × 960. We use the “finalpass” version as it is more realistic.

3.3 Results

SCARED2019. We summarized the evaluation results on Test-Original in Ta-
ble 2, including methods reported in the challenge summary paper [1]. We also
provided unsupervised methods from [10] in the supplementary material. Note
that our model never seen the training set. As shown in Table 3, our results show
an improvement compared with the state-of-the-art Pure CNN method LEASt-
ereo and a transformer-based method STTR [13] on our reorganized Test-19 set.
Please refer to supplementary material for more results on non-occluded areas.
dVPN. As shown in Table 4, our results are better than other competitors.
Noting that DSSR [17] opts for the same structure with STTR [13]. Several
unsupervised methods, e.g., SADepth [10], are not included in this table as they
are trained with reconstruction losses which will lead to a high value of the
evaluated SSIM metric. However, for the sake of completeness, we provide their
results in supplementary material.

4 Conclusion

In this paper, we extensively investigated the effect of transformers for laparo-
scopic stereo matching in terms of loss landscapes, projected learning trajec-
tories, in-domain/cross-domain accuracy, and proposed a new hybrid stereo
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Table 4. Evaluation on the dVPN test set (↑ means higher is better). We directly
report results of ELAS and SPS from [10]. Results of E-DSSR and DSSR are from [17].

Method Training Mean SSIM ↑ Mean PSNR ↑
ELAS [8] No training 47.3 -
SPS [30] No training 54.7 -
E-DSSR [17] No training 41.97±7.32 13.09± 2.14
DSSR [17] No training 42.41± 7.12 12.85 ± 2.03
LEAStereo [5] No training 55.67 15.25
HybridStereoNet No training 56.98 15.45

Left Right Predict Disp Reconstructed Left

Fig. 8. Quantitative results on the dVPN dataset. The invalid areas on the left side of
the reconstructed image are the occluded areas.

matching framework. We empirically found that for laparoscopic stereo match-
ing, using transformers to learn feature presentations and CNNs to aggregate
matching costs can lead to faster convergence, higher accuracy and better gen-
eralization. Our proposed HybridStereoNet surpasses state-of-the-art methods
on SCARED2019 and dVPN datasets.

References

1. Allan, M., Mcleod, J., Wang, C., Rosenthal, J.C., Hu, Z., Gard, N., Eisert, P.,
Fu, K.X., Zeffiro, T., Xia, W., et al.: Stereo correspondence and reconstruction of
endoscopic data challenge. arXiv preprint arXiv:2101.01133 (2021)

2. Cartucho, J., Tukra, S., Li, Y., S. Elson, D., Giannarou, S.: Visionblender: a tool to
efficiently generate computer vision datasets for robotic surgery. CMBBE: Imaging
& Visualization 9(4), 331–338 (2021)

3. Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C.,
Chayes, J., Sagun, L., Zecchina, R.: Entropy-sgd: Biasing gradient descent into
wide valleys. Journal of Statistical Mechanics: Theory and Experiment 2019(12),
124018 (2019)

4. Cheng, X., Zhong, Y., Dai, Y., Ji, P., Li, H.: Noise-aware unsupervised deep lidar-
stereo fusion. In: CVPR (2019)

5. Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., Drummond, T., Ge,
Z.: Hierarchical neural architecture search for deep stereo matching. In: NeurIPS.
vol. 33 (2020)

6. Chong, N., Si, Y., Zhao, W., Zhang, Q., Yin, B., Zhao, Y.: Virtual reality ap-
plication for laparoscope in clinical surgery based on siamese network and census
transformation. In: MICAD. pp. 59–70. Springer (2021)

7. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929 (2020)



10 X. Cheng et al.

8. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: ACCV.
pp. 25–38. Springer (2010)

9. Hore, A., Ziou, D.: Image quality metrics: Psnr vs. ssim. In: 2010 20th international
conference on pattern recognition. pp. 2366–2369. IEEE (2010)

10. Huang, B., Zheng, J.Q., Nguyen, A., Tuch, D., Vyas, K., Giannarou, S., Elson, D.S.:
Self-supervised generative adversarial network for depth estimation in laparoscopic
images. In: MICCAI. pp. 227–237. Springer (2021)

11. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: Generalization gap and sharp minima. ICLR
(2017)

12. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. NeurIPS 31 (2018)

13. Li, Z., Liu, X., Drenkow, N., Ding, A., Creighton, F.X., Taylor, R.H., Unberath,
M.: Revisiting stereo depth estimation from a sequence-to-sequence perspective
with transformers. In: ICCV. pp. 6197–6206 (October 2021)

14. Lipson, L., Teed, Z., Deng, J.: RAFT-Stereo: Multilevel Recurrent Field Trans-
forms for Stereo Matching. arXiv preprint arXiv:2109.07547 (2021)

15. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: ICCV. pp.
10012–10022 (2021)

16. Liu, Z., Ning, J., Cao, Y., Wei, Y., Zhang, Z., Lin, S., Hu, H.: Video swin trans-
former. arXiv preprint arXiv:2106.13230 (2021)

17. Long, Y., Li, Z., Yee, C.H., Ng, C.F., Taylor, R.H., Unberath, M., Dou, Q.: E-
dssr: Efficient dynamic surgical scene reconstruction with transformer-based stereo-
scopic depth perception. In: MICCAI. pp. 415–425. Springer (2021)

18. Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: CVPR. pp. 4040–4048 (2016)

19. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)
20. Nicolau, S., Soler, L., Mutter, D., Marescaux, J.: Augmented reality in laparoscopic

surgical oncology. Surgical oncology 20(3), 189–201 (2011)
21. Overley, S.C., Cho, S.K., Mehta, A.I., Arnold, P.M.: Navigation and robotics in

spinal surgery: where are we now? Neurosurgery 80(3S), S86–S99 (2017)
22. Qin, Z., Sun, W., Deng, H., Li, D., Wei, Y., Lv, B., Yan, J., Kong, L., Zhong, Y.:

cosformer: Rethinking softmax in attention. In: ICLR (2022)
23. Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X.,
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