Skip to main content

Deep Learning-Based Head and Neck Radiotherapy Planning Dose Prediction via Beam-Wise Dose Decomposition

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Accurate dose map prediction is key to external radiotherapy. Previous methods have achieved promising results; however, most of these methods learn the dose map as a black box without considering the beam-shaped radiation for treatment delivery in clinical practice. The accuracy is usually limited, especially on beam paths. To address this problem, this paper describes a novel “disassembling-then-assembling" strategy to consider the dose prediction task from the nature of radiotherapy. Specifically, a global-to-beam network is designed to first predict dose values of the whole image space and then utilize the proposed innovative beam masks to decompose the dose map into multiple beam-based sub-fractions in a beam-wise manner. This can disassemble the difficult task to a few easy-to-learn tasks. Furthermore, to better capture the dose distribution in region-of-interest (ROI), we introduce two novel value-based and criteria-based dose volume histogram (DVH) losses to supervise the framework. Experimental results on the public OpenKBP challenge dataset show that our method outperforms the state-of-the-art methods, especially on beam paths, creating a trustable and interpretable AI solution for radiotherapy treatment planning. Our code is available at https://github.com/ukaukaaaa/BeamDosePrediction.

B. Wang and L. Teng—Equal Contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babier, A., et al.: OpenKBP: the open-access knowledge-based planning grand challenge and dataset. Med. Phys. 48(9), 5549–5561 (2021)

    Google Scholar 

  2. Dias, J., Rocha, H., Ferreira, B., do Carmo Lopes, M.: Simulated annealing applied to IMRT beam angle optimization: a computational study. Physica Medica 31(7), 747–756 (2015)

    Google Scholar 

  3. Gronberg, M.P., Gay, S.S., Netherton, T.J., Rhee, D.J., Court, L.E., Cardenas, C.E.: Dose prediction for head and neck radiotherapy using a three-dimensional dense dilated u-net architecture. Med. Phys. 48(9), 5567–5573 (2021)

    Article  Google Scholar 

  4. Kearney, V., Chan, J.W., Valdes, G., Solberg, T.D., Yom, S.S.: The application of artificial intelligence in the IMRT planning process for head and neck cancer. Oral Oncol. 87, 111–116 (2018)

    Article  Google Scholar 

  5. Lin, Y., Liu, Y., Liu, J., Liu, G., Ma, K., Zheng, Y.: LE-NAS: learning-based ensemble with NAS for dose prediction. arXiv preprint arXiv:2106.06733 (2021)

  6. Liu, S., Zhang, J., Li, T., Yan, H., Liu, J.: A cascade 3D U-Net for dose prediction in radiotherapy. Med. Phys. 48(9), 5574–5582 (2021)

    Article  Google Scholar 

  7. Men, C., Romeijn, H.E., Taşkın, Z.C., Dempsey, J.F.: An exact approach to direct aperture optimization in IMRT treatment planning. Phys. Med. Biol. 52(24), 7333 (2007)

    Article  Google Scholar 

  8. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  9. Nguyen, D., et al.: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected u-net deep learning architecture. Phys. Med. Biol. 64(6), 065020 (2019)

    Google Scholar 

  10. Nguyen, D., et al.: Incorporating human and learned domain knowledge into training deep neural networks: a differentiable dose-volume histogram and adversarial inspired framework for generating pareto optimal dose distributions in radiation therapy. Med. Phys. 47(3), 837–849 (2020)

    Google Scholar 

  11. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  12. Tan, S., et al.: Incorporating isodose lines and gradient information via multi-task learning for dose prediction in radiotherapy. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 753–763. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_71

  13. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from t1-weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Google Scholar 

  14. Xu, X., et al.: Prediction of optimal dosimetry for intensity-modulated radiotherapy with a cascaded auto-content deep learning model. Int. J. Radiat. Oncol. Biol. Phys. 111(3), e113 (2021)

    Google Scholar 

  15. Zhang, J., Liu, S., Yan, H., Li, T., Mao, R., Liu, J.: Predicting voxel-level dose distributions for esophageal radiotherapy using densely connected network with dilated convolutions. Phys. Med. Biol. 65(20), 205013 (2020)

    Article  Google Scholar 

  16. Zimmermann, L., Faustmann, E., Ramsl, C., Georg, D., Heilemann, G.: Dose prediction for radiation therapy using feature-based losses and one cycle learning. Med. Phys. 48(9), 5562–5566 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qianjin Feng or Dinggang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, B. et al. (2022). Deep Learning-Based Head and Neck Radiotherapy Planning Dose Prediction via Beam-Wise Dose Decomposition. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics