Skip to main content

Stereo Depth Estimation via Self-supervised Contrastive Representation Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

Accurate stereo depth estimation is crucial for 3D reconstruction in surgery. Self-supervised approaches are more preferable than supervised approaches when limited data is available for training but they can not learn clear discrete data representations. In this work, we propose a two-phase training procedure which entails: (1) Performing Contrastive Representation Learning (CRL) of left and right views to learn discrete stereo features (2) Utilising the trained CRL model to learn disparity via self-supervised training based on the photometric loss. For efficient and scalable CRL training on stereo images we introduce a momentum pseudo-supervised contrastive loss. Qualitative and quantitative performance evaluation on minimally invasive surgery and autonomous driving data shows that our approach achieves higher image reconstruction score and lower depth error when compared to state-of-the-art self-supervised models. This verifies that contrastive learning is effective in optimising stereo-depth estimation with self-supervised models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan, M., McLeod, A.J., Wang, C.C., et al. J.R.: Stereo correspondence and reconstruction of endoscopic data challenge. CoRR arXiv:2101.01133 (2021)

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, 13–18 Jul 2020, vol. 119, pp. 1597–1607 (2020)

    Google Scholar 

  3. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  4. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: ACCV (2010)

    Google Scholar 

  5. Giannarou, S., Visentini-Scarzanella, M., Yang, G.Z.: Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 130–143 (2012)

    Article  Google Scholar 

  6. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)

    Google Scholar 

  8. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. arXiv preprint arXiv:1911.05722 (2019)

  9. Khosla, P., et al.: Supervised contrastive learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

  10. Lipson, L., Teed, Z., Deng, J.: RAFT-Stereo: multilevel recurrent field transforms for stereo matching. arXiv preprint arXiv:2109.07547 (2021)

  11. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2016). http://lmb.informatik.uni-freiburg.de/Publications/2016/MIFDB16, arXiv:1512.02134

  12. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2016)

    Google Scholar 

  13. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry Remote Sens. (JPRS) 140, 60–76 (2018)

    Article  Google Scholar 

  14. Pilzer, A., Lathuilière, S., Xu, D., Puscas, M.M., Ricci, E., Sebe, N.: Progressive fusion for unsupervised binocular depth estimation using cycled networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2380–2395 (2019)

    Article  Google Scholar 

  15. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  16. Tankovich, V., Häne, C., Fanello, S., Zhang, Y., Izadi, S., Bouaziz, S.: Hitnet: hierarchical iterative tile refinement network for real-time stereo matching. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14357–14367 (2021)

    Google Scholar 

  17. Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., Di Stefano, L.: Real-time self-adaptive deep stereo. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  18. Wang, Y., Wang, P., Yang, Z., Luo, C., Yang, Y., Xu, W.: Unos: unified unsupervised optical-flow and stereo-depth estimation by watching videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  19. Yamaguchi, K., McAllester, D.A., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: ECCV (2014)

    Google Scholar 

  20. Ye, M., Johns, E., Handa, A., Zhang, L., Pratt, P., Yang, G.: Self-supervised siamese learning on stereo image pairs for depth estimation in robotic surgery. arXiv preprint arXiv:1705.08260 (2017)

  21. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: Ga-net: guided aggregation net for end-to-end stereo matching. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 185–194 (2019)

    Google Scholar 

  22. Zhong, Y., Dai, Y., Li, H.: Self-supervised learning for stereo matching with self-improving ability. arXiv preprint arXiv:1709.00930 (2017)

Download references

Acknowledgements

Supported by the Royal Society (URF\(\setminus \)R\(\setminus \)201014 and RGF\(\setminus \)EA\(\setminus \)180084) and the NIHR Imperial Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samyakh Tukra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tukra, S., Giannarou, S. (2022). Stereo Depth Estimation via Self-supervised Contrastive Representation Learning. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics