Skip to main content

Unsupervised Cross-disease Domain Adaptation by Lesion Scale Matching

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13437))

Abstract

Breast and thyroid lesions share many similarities in the feature representations of ultrasound images. However, there is a huge lesion scale gap between the two diseases, making it difficult to transfer knowledge between them through current methods for unsupervised domain adaptation. To address this problem, we propose a lesion scale matching approach where we employ a framework of latent space search for bounding box size to re-scale the source domain images, and then the Monte Carlo Expectation Maximization algorithm is used for optimization to match the lesion scales between the two disease domains. Extensive experimental results demonstrate the feasibility of cross-disease knowledge transfer, and our proposed method substantially improves the performance of unsupervised cross-disease domain adaptation models, with the Accuracy, Recall, Precision, and F1-score improved by 8.29%, 6.41%, 11.25%, and 9.14% on average in the three sets of ablation experiments.

J. Gao and Q. Lao—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Can. J. Clin. 71(3), 209–249 (2021)

    Google Scholar 

  2. Agarwal, D.P., Soni, T.P., Sharma, O.P., Sharma, S.: Synchronous malignancies of breast and thyroid gland: a case report and review of literature. J. Can. Res. Ther. 3(3), 172–173 (2007)

    Article  Google Scholar 

  3. Chen, J., et al.: Correlation analysis of breast and thyroid nodules: a cross-sectional study. Int. J. Gener. Med. 14, 3999–4010 (2021)

    Article  Google Scholar 

  4. An, J.H., et al.: A possible association between thyroid cancer and breast cancer. Thyroid 25(12), 1330–1338 (2015). PMID: 26442580

    Google Scholar 

  5. Yi-Cheng, Z., et al.: A generic deep learning framework to classify thyroid and breast lesions in ultrasound images. Ultrasonics 110, 106300 (2021)

    Article  Google Scholar 

  6. Sahiner, B., et al.: Malignant and benign breast masses on 3d us volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology 242(3), 716–724 (2007). PMID: 17244717

    Article  Google Scholar 

  7. Chen, K., et al.: Enhanced breast lesion classification via knowledge guided cross-modal and semantic data augmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 53–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_6

    Chapter  Google Scholar 

  8. Liu, T., et al.: Automated detection and classification of thyroid nodules in ultrasound images using clinical-knowledge-guided convolutional neural networks. Med. Image Anal. 58, 101555 (2019)

    Article  Google Scholar 

  9. Qian, X., et al.: Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning. Nat. Biomed. Eng. 5, 1–11 (2021)

    Article  Google Scholar 

  10. Sharifi, Y., Bakhshali, M.A., Dehghani, T., DanaiAshgzari, M., Sargolzaei, M., Eslami, S.: Deep learning on ultrasound images of thyroid nodules. Biocybern. Biomed. Eng. 41(2), 636–655 (2021)

    Article  Google Scholar 

  11. Nguyen, D.T., Kang, J.K., Pham, T.D., Batchuluun, G., Park, K.R.: Ultrasound image-based diagnosis of malignant thyroid nodule using artificial intelligence. Sensors 20(7), 1822 (2020)

    Article  Google Scholar 

  12. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  13. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.), Advances in Neural Information Processing Systems, vol. 31. Curran Associates Inc (2018)

    Google Scholar 

  14. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: Proceedings of the 36th International Conference on Machine Learning, pp. 7404–7413. PMLR (2019)

    Google Scholar 

  15. Yang, Y., Soatto, S.: Fda: fourier domain adaptation for semantic segmentation. In: CVPR, pp. 4084–4094 (2020)

    Google Scholar 

  16. Lao, Q., Jiang, X., Havaei, M.: Hypothesis disparity regularized mutual information maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 8243–8251 (2021)

    Google Scholar 

  17. Touvron, H., Vedaldi, A., Douze, M., Jegou, H.: Fixing the train-test resolution discrepancy. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.), Advances in Neural Information Processing Systems, vol. 32. Curran Associates Inc (2019)

    Google Scholar 

  18. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability and Statistics. Wiley (2007)

    Google Scholar 

  19. Jiang, Y.X., Liu, H., Liu, J.B., Zhu, Q.L., Sun, Q., Chang, X.Y.: Breast tumor size assessment: comparison of conventional ultrasound and contrast-enhanced ultrasound. Ultrasound Med. Biol. 33, 1873–1881 (2007)

    Google Scholar 

  20. Golshan, M., Fung, B.B., Wiley, E., Wolfman, J., Rademaker, A., Morrow, M.: Prediction of breast cancer size by ultrasound, mammography and core biopsy. Breast 13(4), 265–271 (2004)

    Article  Google Scholar 

  21. Shoma, A., Moutamed, A., Ameen, M., Abdelwahab, A.: Ultrasound for accurate measurement of invasive breast cancer tumor size. Breast J. 12(3), 252–256 (2006)

    Article  Google Scholar 

  22. Zheng, X., et al.: Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat. Commun. 11, 03 (2020)

    Google Scholar 

  23. Cavallo, A., et al.: Thyroid nodule size at ultrasound as a predictor of malignancy and final pathologic size. Thyroid 27, 01 (2017)

    Article  MathSciNet  Google Scholar 

  24. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  26. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE Computer Society, Los Alamitos, CA, USA, June 2016

    Google Scholar 

  27. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  28. Woong-Gi, C., You, T., Seo, S., Kwak, S., Han, B.: Domain-specific batch normalization for unsupervised domain adaptation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, J., Lao, Q., Kang, Q., Liu, P., Zhang, L., Li, K. (2022). Unsupervised Cross-disease Domain Adaptation by Lesion Scale Matching. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics