Skip to main content

vMFNet: Compositionality Meets Domain-Generalised Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Training medical image segmentation models usually requires a large amount of labeled data. By contrast, humans can quickly learn to accurately recognise anatomy of interest from medical (e.g. MRI and CT) images with some limited guidance. Such recognition ability can easily generalise to new images from different clinical centres. This rapid and generalisable learning ability is mostly due to the compositional structure of image patterns in the human brain, which is less incorporated in medical image segmentation. In this paper, we model the compositional components (i.e. patterns) of human anatomy as learnable von-Mises-Fisher (vMF) kernels, which are robust to images collected from different domains (e.g. clinical centres). The image features can be decomposed to (or composed by) the components with the composing operations, i.e. the vMF likelihoods. The vMF likelihoods tell how likely each anatomical part is at each position of the image. Hence, the segmentation mask can be predicted based on the vMF likelihoods. Moreover, with a reconstruction module, unlabeled data can also be used to learn the vMF kernels and likelihoods by recombining them to reconstruct the input image. Extensive experiments show that the proposed vMFNet achieves improved generalisation performance on two benchmarks, especially when annotations are limited. Code is publicly available at: https://github.com/vios-s/vMFNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    vMF kernels are similar to prototypes in [35]. However, prototypes are usually calculated as the mean of the feature vectors for each class using the ground-truth masks. vMF kernels are learnt as the cluster centres of the feature vectors.

References

  1. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep representations. JMLR 19(1), 1947–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Arad Hudson, D., Zitnick, L.: Compositional transformers for scene generation. In: NeurIPS (2021)

    Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018)

    Google Scholar 

  4. Campello, V.M., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M &Ms challenge. IEEE TMI 40(12), 3543–3554 (2021)

    Google Scholar 

  5. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalisation by solving jigsaw puzzles. In: CVPR, pp. 2229–2238 (2019)

    Google Scholar 

  6. Chartsias, A., Joyce, T., et al.: Disentangled representation learning in cardiac image analysis. Media 58, 101535 (2019)

    Google Scholar 

  7. Chen, C., Hammernik, K., Ouyang, C., Qin, C., Bai, W., Rueckert, D.: Cooperative training and latent space data augmentation for robust medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 149–159. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_14

    Chapter  Google Scholar 

  8. Chen, C., Qin, C., Qiu, H., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7(25), 1–33 (2020)

    Google Scholar 

  9. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalisation via model-agnostic learning of semantic features. In: NeurIPS (2019)

    Google Scholar 

  10. Dubuisson, M.P., Jain, A.K.: A modified hausdorff distance for object matching. In: ICPR, vol. 1, pp. 566–568. IEEE (1994)

    Google Scholar 

  11. Gu, R., Zhang, J., Huang, R., Lei, W., Wang, G., Zhang, S.: Domain composition and attention for unseen-domain generalizable medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 241–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_23

    Chapter  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. He, Y., Carass, A., Zuo, L., et al.: Autoencoder based self-supervised test-time adaptation for medical image analysis. Media 72, 102136 (2021)

    Google Scholar 

  14. Hu, M., et al.: Fully test-time adaptation for image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 251–260. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_24

    Chapter  Google Scholar 

  15. Huang, J., Guan, D., Xiao, A., Lu, S.: FSDR: frequency space domain randomization for domain generalization. In: CVPR (2021)

    Google Scholar 

  16. Huynh, D., Elhamifar, E.: Compositional zero-shot learning via fine-grained dense feature composition. In: NeurIPS, vol. 33, pp. 19849–19860 (2020)

    Google Scholar 

  17. Isensee, F., Jaeger, P.F., et al.: nnUNet: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  18. Iwasawa, Y., Matsuo, Y.: Test-time classifier adjustment module for model-agnostic domain generalization. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  19. Karani, N., Erdil, E., Chaitanya, K., Konukoglu, E.: Test-time adaptable neural networks for robust medical image segmentation. Media 68, 101907 (2021)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Kortylewski, A., He, J., Liu, Q., Yuille, A.L.: Compositional convolutional neural networks: a deep architecture with innate robustness to partial occlusion. In: CVPR, pp. 8940–8949 (2020)

    Google Scholar 

  22. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalise: meta-learning for domain generalisation. In: AAAI (2018)

    Google Scholar 

  23. Li, H., Wang, Y., Wan, R., Wang, S., et al.: Domain generalisation for medical imaging classification with linear-dependency regularization. In: NeurIPS (2020)

    Google Scholar 

  24. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: AtrialGeneral: domain generalization for left atrial segmentation of multi-center LGE MRIs. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 557–566. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_54

    Chapter  Google Scholar 

  25. Liu, N., Li, S., Du, Y., Tenenbaum, J., Torralba, A.: Learning to compose visual relations. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  26. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: CVPR, pp. 1013–1023 (2021)

    Google Scholar 

  27. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  28. Liu, X., Thermos, S., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Disentangled representations for domain-generalised cardiac segmentation. In: STACOM Workshop (2020)

    Google Scholar 

  29. Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A.: Semi-supervised meta-learning with disentanglement for domain-generalised medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_29

    Chapter  Google Scholar 

  30. Liu, X., Thermos, S., Valvano, G., Chartsias, A., O’Neil, A., Tsaftaris, S.A.: Measuring the biases and effectiveness of content-style disentanglement. In: BMVC (2021)

    Google Scholar 

  31. Milletari, F., Navab, N., Ahmadi, S.A.: VNet: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

    Google Scholar 

  32. Paszke, A., Gross, S., Massa, F., Lerer, A., et. al: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS, pp. 8026–8037 (2019)

    Google Scholar 

  33. Prados, F., Ashburner, J., Blaiotta, C., Brosch, T., et al.: Spinal cord grey matter segmentation challenge. Neuroimage 152, 312–329 (2017)

    Article  Google Scholar 

  34. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  35. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS, pp. 4080–4090 (2017)

    Google Scholar 

  36. Tokmakov, P., Wang, Y.X., Hebert, M.: Learning compositional representations for few-shot recognition. In: CVPR, pp. 6372–6381 (2019)

    Google Scholar 

  37. Valvano, G., Leo, A., Tsaftaris, S.A.: Re-using adversarial mask discriminators for test-time training under distribution shifts. arXiv preprint arXiv:2108.11926 (2021)

  38. Valvano, G., Leo, A., Tsaftaris, S.A.: Stop throwing away discriminators! Re-using adversaries for test-time training. In: Albarqouni, S., et al. (eds.) DART/FAIR -2021. LNCS, vol. 12968, pp. 68–78. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87722-4_7

    Chapter  Google Scholar 

  39. Yao, H., Hu, X., Li, X.: Enhancing pseudo label quality for semi-superviseddomain-generalized medical image segmentation. arXiv preprint arXiv:2201.08657 (2022)

  40. Yuan, X., Kortylewski, A., et al.: Robust instance segmentation through reasoning about multi-object occlusion. In: CVPR, pp. 11141–11150 (2021)

    Google Scholar 

  41. Zakazov, I., Shirokikh, B., Chernyavskiy, A., Belyaev, M.: Anatomy of domain shift impact on U-Net layers in MRI segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 211–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_20

    Chapter  Google Scholar 

  42. Zhang, L., Wang, X., Yang, D., Sanford, T., et al.: Generalising deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE TMI 39(7), 2531–2540 (2020)

    Google Scholar 

  43. Zhang, Y., Kortylewski, A., Liu, Q., et al.: A light-weight interpretable compositionalnetwork for nuclei detection and weakly-supervised segmentation. arXiv preprint arXiv:2110.13846 (2021)

Download references

Acknowledgement

This work was supported by the University of Edinburgh, the Royal Academy of Engineering and Canon Medical Research Europe by a PhD studentship to Xiao Liu. This work was partially supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1. S.A. Tsaftaris acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RCSRF1819 8 25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 167 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Thermos, S., Sanchez, P., O’Neil, A.Q., Tsaftaris, S.A. (2022). vMFNet: Compositionality Meets Domain-Generalised Segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics