Abstract
Hand hygiene can reduce the transmission of pathogens and prevent healthcare-associated infections. Ultraviolet (UV) test is an effective tool for evaluating and visualizing hand hygiene quality during medical training. However, due to various hand shapes, sizes, and positions, systematic documentation of the UV test results to summarize frequently untreated areas and validate hand hygiene technique effectiveness is challenging. Previous studies often summarize errors within predefined hand regions, but this only provides low-resolution estimations of hand hygiene quality. Alternatively, previous studies manually translate errors to hand templates, but this lacks standardized observational practices. In this paper, we propose a novel automatic image-to-image translation framework to evaluate hand hygiene quality and document the results in a standardized manner. The framework consists of two models, including an Attention U-Net model to segment hands from the background and simultaneously classify skin surfaces covered with hand disinfectants, and a U-Net-based generator to translate the segmented hands to hand templates. Moreover, due to the lack of publicly available datasets, we conducted a lab study to collect 1218 valid UV test images containing different skin coverage with hand disinfectants. The proposed framework was then evaluated on the collected dataset through five-fold cross-validation. Experimental results show that the proposed framework can accurately assess hand hygiene quality and document UV test results in a standardized manner. The benefit of our work is that it enables systematic documentation of hand hygiene practices, which in turn enables clearer communication and comparisons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bradski, G.: The OpenCV library. Dr Dobbs J. Softw. Tools (2000). https://doi.org/10.1111/0023-8333.50.s1.10
Chen, C., Dou, Q., Jin, Y., Chen, H., Qin, J., Heng, P.-A.: Robust multimodal brain tumor segmentation via feature disentanglement and gated fusion. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_50
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Kampf, G., Reichel, M., Feil, Y., Eggerstedt, S., Kaulfers, P.M.: Influence of rub-in technique on required application time and hand coverage in hygienic hand disinfection. BMC Infect. Dis. (2008). https://doi.org/10.1186/1471-2334-8-149
Kampf, G., Ruselack, S., Eggerstedt, S., Nowak, N., Bashir, M.: Less and less-influence of volume on hand coverage and bactericidal efficacy in hand disinfection. BMC Infect. Dis. (2013). https://doi.org/10.1186/1471-2334-13-472
Lehotsky, A., Szilagyi, L., Bansaghi, S., Szeremy, P., Weber, G., Haidegger, T.: Towards objective hand hygiene technique assessment: validation of the ultraviolet-dye-based hand-rubbing quality assessment procedure. J. Hospital Infection 97(1), 26–29 (2017). https://doi.org/10.1016/j.jhin.2017.05.022, https://linkinghub.elsevier.com/retrieve/pii/S0195670117302943
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)
Öncü, E., Vayısoğlu, S.K.: Duration or technique to improve the effectiveness of children’ hand hygiene: a randomized controlled trial. Am. J. Infect. Control (2021). https://doi.org/10.1016/j.ajic.2021.03.012
Otsu, N.: Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. (1979). https://doi.org/10.1109/tsmc.1979.4310076
Rittenschober-Böhm, J., et al.: The association between shift patterns and the quality of hand antisepsis in a neonatal intensive care unit: an observational study. Int. J. Nurs. Stud. (2020). https://doi.org/10.1016/j.ijnurstu.2020.103686
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Standardization, E.C.: European Standard, EN1500:2013, CHEMICAL DISINFECTANTS AND ANTISEPTICS. HYGIENIC HANDRUB. TEST METHOD AND REQUIREMENTS (PHASE 2/STEP 2). European Committee for Standardization (2013)
Szilágyi, L., Lehotsky, A., Nagy, M., Haidegger, T., Benyó, B., Benyó, Z.: Stery-hand: A new device to support hand disinfection. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2010 (2010). https://doi.org/10.1109/IEMBS.2010.5626377
Taghanaki, S.A., et al.: Combo loss: handling input and output imbalance in multi-organ segmentation. Comput. Med. Imaging Graph. 75, 24–33 (2019)
Taylor, L.J.: An evaluation of handwashing techniques-1. Nursing times (1978)
Taylor, L.J.: An evaluation of handwashing techniques-2. Nursing times (1978)
Vanyolos, E., et al.: Usage of ultraviolet test method for monitoring the efficacy of surgical hand rub technique among medical students. J. Surg. Educ. (2015). https://doi.org/10.1016/j.jsurg.2014.12.002
Wang, C., et al.: A system for computational assessment of hand hygiene techniques. J. Med. Syst. 46(6), 36 (2022). https://doi.org/10.1007/s10916-022-01817-z
Wang, C., et al.: Electronic monitoring systems for hand hygiene: systematic review of technology (2021). https://doi.org/10.2196/27880
World Health Organization (WHO): WHO guidelines on hand hygiene in health care (2009)
Zhang, F., et al.: MediaPipe hands: on-device real-time hand tracking. arXiv preprint arXiv:2006.10214 (2020)
Acknowledgement
This work is partially funded by NHMRC grants 1170937 and 2004316. Chaofan Wang is supported by a PhD scholarship provided by the Australian Commonwealth Government Research Training Program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, C. et al. (2022). Hand Hygiene Quality Assessment Using Image-to-Image Translation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-16449-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16448-4
Online ISBN: 978-3-031-16449-1
eBook Packages: Computer ScienceComputer Science (R0)