Skip to main content

PRO-TIP: Phantom for RObust Automatic Ultrasound Calibration by TIP Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

We propose a novel method to automatically calibrate tracked ultrasound probes. To this end we design a custom phantom consisting of nine cones with different heights. The tips are used as key points to be matched between multiple sweeps. We extract them using a convolutional neural network to segment the cones in every ultrasound frame and then track them across the sweep. The calibration is robustly estimated using RANSAC and later refined employing image based techniques. Our phantom can be 3D-printed and offers many advantages over state-of-the-art methods. The phantom design and algorithm code are freely available online. Since our phantom does not require a tracking target on itself, ease of use is improved over currently used techniques. The fully automatic method generalizes to new probes and different vendors, as shown in our experiments. Our approach produces results comparable to calibrations obtained by a domain expert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/ImFusionGmbH/PRO-TIP-Automatic-Ultrasound-Calibration.

References

  1. Barratt, D.C., Davies, A.H., Hughes, A.D., Thom, S.A., Humphries, K.N.: Accuracy of an electromagnetic three-dimensional ultrasound system for carotid artery imaging. Ultrasound Med. Biol. 27(10), 1421–1425 (2001)

    Article  Google Scholar 

  2. Carbajal, G., Lasso, A., Gómez, Á., Fichtinger, G.: Improving n-wire phantom-based freehand ultrasound calibration. Int. J. Comput. Assist. Radiol. Surg. 8(6), 1063–1072 (2013)

    Article  Google Scholar 

  3. Chatrasingh, M., Suthakorn, J.: A novel design of N-fiducial phantom for automatic ultrasound calibration. J. Med. Phys. 44(3), 191 (2019). http://www.jmp.org.in/text.asp?2019/44/3/191/266852

  4. Chen, E.C., Lasso, A., Fichtinger, G.: External tracking devices and tracked tool calibration. In: Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 777–794. Elsevier (2020)

    Google Scholar 

  5. Chen, T.K., Thurston, A.D., Ellis, R.E., Abolmaesumi, P.: A real-time freehand ultrasound calibration system with automatic accuracy feedback and control. Ultrasound Med. Biol. 35(1), 79–93 (2009). https://doi.org/10.1016/j.ultrasmedbio.2008.07.004, https://linkinghub.elsevier.com/retrieve/pii/S0301562908003190

  6. Cheng, A., Guo, X., Zhang, H.K., Kang, H.J., Etienne-Cummings, R., Boctor, E.M.: Active phantoms: a paradigm for ultrasound calibration using phantom feedback. J. Med. Imaging 4(3), 035001 (2017)

    Article  Google Scholar 

  7. Dandekar, S., Li, Y., Molloy, J., Hossack, J.: A phantom with reduced complexity for spatial 3-D ultrasound calibration. Ultrasound Med. Biol. 31(8), 1083–1093 (2005)

    Article  Google Scholar 

  8. Detmer, P.R., et al.: 3D ultrasonic image feature localization based on magnetic scanhead tracking: in vitro calibration and validation. Ultrasound Med. Biol. 20(9), 923–936 (1994)

    Google Scholar 

  9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  10. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Fukushima, K.: Neural network model for a mechanism of pattern recognition unaffected by shift in position-neocognitron. IEICE Tech. Rep. A 62(10), 658–665 (1979)

    Google Scholar 

  12. Fukushima, K.: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Higham, N.J.: Matrix nearness problems and applications. In: Gover, M.J.C., Barnett, S. (eds.) Applications of Matrix Theory, pp. 1–27. Oxford University Press, Oxford (1989)

    Google Scholar 

  15. Hsu, P.W., Prager, R.W., Gee, A.H., Treece, G.M.: Freehand 3D ultrasound calibration: a review. Adv. Imaging Biol. Med. 47–84 (2009). https://doi.org/10.1007/978-3-540-68993-5_3

  16. Krupa, A.: Automatic calibration of a robotized 3D ultrasound imaging system by visual servoing. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 4136–4141. IEEE (2006)

    Google Scholar 

  17. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. P. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings ICML, vol. 30, p. 3. Citeseer (2013)

    Google Scholar 

  19. Meairs, S., Beyer, J., Hennerici, M.: Reconstruction and visualization of irregularly sampled three-and four-dimensional ultrasound data for cerebrovascular applications. Ultrasound Med. Biol. 26(2), 263–272 (2000)

    Article  Google Scholar 

  20. Mercier, L., Langø, T., Lindseth, F., Collins, D.L.: A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med. Biol. 31(4), 449–471 (2005)

    Article  Google Scholar 

  21. Muratore, D.M., Galloway, R.L., Jr.: Beam calibration without a phantom for creating a 3-D freehand ultrasound system. Ultrasound Med. Biol. 27(11), 1557–1566 (2001)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Shen, C., Lyu, L., Wang, G., Wu, J.: A method for ultrasound probe calibration based on arbitrary wire phantom. Cogent Eng. 6(1), 1592739 (2019)

    Article  Google Scholar 

  24. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  25. Viswanathan, A., Boctor, E.M., Taylor, R.H., Hager, G., Fichtinger, G.: Immediate ultrasound calibration with three poses and minimal image processing. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 446–454. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_55

    Chapter  Google Scholar 

  26. Wein, W., Khamene, A.: Image-based method for in-vivo freehand ultrasound calibration. In: Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, vol. 6920, pp. 179–185. SPIE (2008)

    Google Scholar 

  27. Wen, T., Wang, C., Zhang, Y., Zhou, S.: A novel ultrasound probe spatial calibration method using a combined phantom and stylus. Ultrasound Med. Biol. 46(8), 2079–2089 (2020)

    Article  Google Scholar 

  28. Xiao, Y., Yan, C.X.B., Drouin, S., De Nigris, D., Kochanowska, A., Collins, D.L.: User-friendly freehand ultrasound calibration using Lego bricks and automatic registration. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1703–1711 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was partially funded by the German Federal Ministry of Education and Research (BMBF), grant 13GW0293B (“FOMIPU”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Ronchetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ronchetti, M. et al. (2022). PRO-TIP: Phantom for RObust Automatic Ultrasound Calibration by TIP Detection. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13437. Springer, Cham. https://doi.org/10.1007/978-3-031-16449-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16449-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16448-4

  • Online ISBN: 978-3-031-16449-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics