Skip to main content

GaitForeMer: Self-supervised Pre-training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Parkinson’s disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F\(_1\) score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)

  2. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33, pp. 1877–1901 (2020)

    Google Scholar 

  3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations (2020)

    Google Scholar 

  4. Daneault, J., et al.: Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson’s disease. Sci. Data 8, 48 (2021)

    Article  Google Scholar 

  5. DeMaagd, G., Philip, A.: Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. P & T: Peer-rev. J. Formulary Manage. 40, 504–32 (2015)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2019)

    Google Scholar 

  7. Goetz, C., Fahn, S., Martinez-Martin, P., Poewe, W., Sampaio, C.: The MDS-sponsored revision of the unified Parkinson’s disease rating scale. J. Mov. Disord. 1, 1–33 (2008)

    Google Scholar 

  8. Goetz, C.G., et al.: Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results: MDS-UPDRS: clinimetric assessment. Mov. Disord. 23(15), 2129–2170 (2008). https://doi.org/10.1002/mds.22340

    Article  Google Scholar 

  9. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners (2021)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning (2020)

    Google Scholar 

  11. Hobert, M.A., Nussbaum, S., Heger, T., Berg, D., Maetzler, W., Heinzel, S.: Progressive gait deficits in Parkinson’s disease: a wearable-based biannual 5-year prospective study. Front. Aging Neurosci. 11 (2019). https://doi.org/10.3389/fnagi.2019.00022, https://www.frontiersin.org/article/10.3389/fnagi.2019.00022

  12. Hssayeni, M.D., Jimenez-Shahed, J., Burack, M.A., Ghoraani, B.: Wearable sensors for estimation of parkinsonian tremor severity during free body movements. Sensors (Basel, Switz.) 19, 4215 (2019)

    Article  Google Scholar 

  13. Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  14. Lu, M., et al.: Vision-based estimation of MDS-UPDRS gait scores for assessing Parkinson’s disease motor severity. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12263, pp. 637–647. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59716-0_61

    Chapter  Google Scholar 

  15. Lu, M., et al.: Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med. Image Anal. 73, 102179 (2021)

    Article  Google Scholar 

  16. Marras, C., et al.: Prevalence of Parkinson’s disease across North America. npj Parkinson’s Dis. 4 (2018). https://doi.org/10.1038/s41531-018-0058-0

  17. Martínez-González, A., Villamizar, M., Odobez, J.M.: Pose transformers (POTR): human motion prediction with non-autoregressive transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 2276–2284, October 2021

    Google Scholar 

  18. Pang, L., Lan, Y., Guo, J., Xu, J., Xu, J., Cheng, X.: DeepRank. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, November 2017. https://doi.org/10.1145/3132847.3132914

  19. Poston, K.L., et al.: Compensatory neural mechanisms in cognitively unimpaired Parkinson disease. Ann. Neurol. 79(3), 448–463 (2016) https://doi.org/10.1002/ana.24585, https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.24585

  20. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  21. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  22. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset for 3d human activity analysis. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1010–1019 (2016). https://doi.org/10.1109/CVPR.2016.115

  23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks (2018)

    Google Scholar 

  24. Weston, J., Watkins, C.: Support vector machines for multi-class pattern recognition (1999)

    Google Scholar 

  25. Wilcoxon, F.: Individual comparisons by ranking methods. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 196–202. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_16

    Chapter  Google Scholar 

  26. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition (2018)

    Google Scholar 

  27. Zesiewicz, T.A., Sullivan, K.L., Hauser, R.A.: Nonmotor symptoms of Parkinson’s disease. Exp. Rev. Neurother. 6(12), 1811–1822 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants (AA010723, NS115114, P30AG066515), the Michael J Fox Foundation for Parkinson’s Research, UST (a Stanford AI Lab alliance member), and the Stanford Institute for Human-Centered Artificial Intelligence (HAI) Google Cloud credits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Adeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Endo, M., Poston, K.L., Sullivan, E.V., Fei-Fei, L., Pohl, K.M., Adeli, E. (2022). GaitForeMer: Self-supervised Pre-training of Transformers via Human Motion Forecasting for Few-Shot Gait Impairment Severity Estimation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics