Skip to main content

Dual-Graph Learning Convolutional Networks for Interpretable Alzheimer’s Disease Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13438))

Abstract

In this paper, we propose a dual-graph learning convolutional network (dGLCN) to achieve interpretable Alzheimer’s disease (AD) diagnosis, by jointly investigating subject graph learning and feature graph learning in the graph convolution network (GCN) framework. Specifically, we first construct two initial graphs to consider both the subject diversity and the feature diversity. We further fuse these two initial graphs into the GCN framework so that they can be iteratively updated (i.e., dual-graph learning) while conducting representation learning. As a result, the dGLCN achieves interpretability in both subjects and brain regions through the subject importance and the feature importance, and the generalizability by overcoming the issues, such as limited subjects and noisy subjects. Experimental results on the Alzheimer’s disease neuroimaging initiative (ADNI) datasets show that our dGLCN outperforms all comparison methods for binary classification. The codes of dGLCN are available on https://github.com/xiaotingsong/dGLCN.

T. Xiao and L. Zeng—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, E., Li, X., Kwon, D., Zhang, Y., Pohl, K.M.: Logistic regression confined by cardinality-constrained sample and feature selection. IEEE Trans. Pattern Anal. Mach. Intell. 42(7), 1713–1728 (2019)

    Article  Google Scholar 

  2. Beal, M.F., Mazurek, M.F., Tran, V.T., Chattha, G., Bird, E.D., Martin, J.B.: Reduced numbers of somatostatin receptors in the cerebral cortex in Alzheimer’s disease. Science 229(4710), 289–291 (1985)

    Article  Google Scholar 

  3. Chen, Y., Wu, L., Zaki, M.: Iterative deep graph learning for graph neural networks: better and robust node embeddings. In: NeurIPS, pp. 19314–19326 (2020)

    Google Scholar 

  4. Feng, J., et al.: Dual-graph convolutional network based on band attention and sparse constraint for hyperspectral band selection. Knowl.-Based Syst. 231, 107428 (2021)

    Article  Google Scholar 

  5. Fu, X., Qi, Q., Zha, Z.J., Zhu, Y., Ding, X.: Rain streak removal via dual graph convolutional network. In: AAAI, pp. 1–9 (2021)

    Google Scholar 

  6. Ihara, M., et al.: Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol. 119(5), 579–589 (2010)

    Article  Google Scholar 

  7. Jiang, B., Zhang, Z., Lin, D., Tang, J., Luo, B.: Semi-supervised learning with graph learning-convolutional networks. In: CVPR, pp. 11313–11320 (2019)

    Google Scholar 

  8. Karas, G., et al.: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 49(12), 967–976 (2007)

    Article  Google Scholar 

  9. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  10. Kumar, M.P., Packer, B., Koller, D.: Self-paced learning for latent variable models. In: NeurIPS, pp. 1189–1197 (2010)

    Google Scholar 

  11. Liu, W., He, J., Chang, S.F.: Large graph construction for scalable semi-supervised learning. In: ICML (2010)

    Google Scholar 

  12. Liu, X., Lei, F., Xia, G.: MulStepNET: stronger multi-step graph convolutional networks via multi-power adjacency matrix combination. J. Ambient Intell. Human Comput., 1–10 (2021). https://doi.org/10.1007/s12652-021-03355-x

  13. Mishina, Y., Murata, R., Yamauchi, Y., Yamashita, T., Fujiyoshi, H.: Boosted random forest. IEICE Trans. Inf. Syst. 98(9), 1630–1636 (2015)

    Article  Google Scholar 

  14. Mizuno, Y., Ikeda, K., Tsuchiya, K., Ishihara, R., Shibayama, H.: Two distinct subgroups of senile dementia of Alzheimer type: quantitative study of neurofibrillary tangles. Neuropathology 23(4), 282–289 (2003)

    Article  Google Scholar 

  15. Morgado, P.M., Silveira, M., Alzheimer’s Disease Neuroimaging Initiative, et al.: Minimal neighborhood redundancy maximal relevance: application to the diagnosis of Alzheimer s disease. Neurocomputing 155, 295–308 (2015)

    Google Scholar 

  16. Muñoz-Romero, S., Gorostiaga, A., Soguero-Ruiz, C., Mora-Jiménez, I., Rojo-Álvarez, J.L.: Informative variable identifier: expanding interpretability in feature selection. Pattern Recogn. 98, 107077 (2020)

    Article  Google Scholar 

  17. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint 2, 1-norms minimization. In: NeurIPS, pp. 1813–1821 (2010)

    Google Scholar 

  18. Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)

    Article  Google Scholar 

  19. Petersen, R.C., et al.: Memory and MRI-based hippocampal volumes in aging and AD. Neurology 54(3), 581 (2000)

    Article  Google Scholar 

  20. Qiu, S., et al.: Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain 143(6), 1920–1933 (2020)

    Article  Google Scholar 

  21. Reijmer, Y.D., et al.: Disruption of cerebral networks and cognitive impairment in Alzheimer disease. Neurology 80(15), 1370–1377 (2013)

    Article  Google Scholar 

  22. Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: ICML, pp. 4334–4343 (2018)

    Google Scholar 

  23. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  24. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  25. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: ECCV, pp. 52–66 (2018)

    Google Scholar 

  26. Yun, Y., Dai, H., Cao, R., Zhang, Y., Shang, X.: Self-paced graph memory network for student GPA prediction and abnormal student detection. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021. LNCS (LNAI), vol. 12749, pp. 417–421. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78270-2_74

    Chapter  Google Scholar 

  27. Zeng, L., Li, H., Xiao, T., Shen, F., Zhong, Z.: Graph convolutional network with sample and feature weights for Alzheimer’s disease diagnosis. Inf. Process. Manag. 59(4), 102952 (2022)

    Article  Google Scholar 

  28. Zhu, J., Rosset, S., Tibshirani, R., Hastie, T.J.: 1-norm support vector machines. In: NeurIPS, pp. 49–56 (2003)

    Google Scholar 

  29. Zhu, X., et al.: A novel relational regularization feature selection method for joint regression and classification in AD diagnosis. Med. Image Anal. 38, 205–214 (2017)

    Article  Google Scholar 

  30. Zhu, Y., Ma, J., Yuan, C., Zhu, X.: Interpretable learning based dynamic graph convolutional networks for Alzheimer’s disease analysis. Inf. Fusion 77, 53–61 (2022)

    Article  Google Scholar 

  31. Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-based semi-supervised classification. In: WWW, pp. 499–508 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant No. 61876046), Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China (No. ZYGX2022YGRH009 and ZYGX2022YGRH014) and the Guangxi “Bagui” Teams for Innovation and Research, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoshuang Shi or Xiaofeng Zhu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7788 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, T., Zeng, L., Shi, X., Zhu, X., Wu, G. (2022). Dual-Graph Learning Convolutional Networks for Interpretable Alzheimer’s Disease Diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics