Abstract
While deep networks have demonstrated state-of-the-art performance in medical image analysis, they suffer from biases caused by undesirable confounding variables (e.g., sex, age, race). Traditional statistical methods for removing confounders are often incompatible with modern deep networks. To address this challenge, we introduce a novel learning framework, named ReConfirm, based on the invariant risk minimization (IRM) theory to eliminate the biases caused by confounding variables and make deep networks more robust. Our approach allows end-to-end model training while capturing causal features responsible for pathological findings instead of spurious correlations. We evaluate our approach on NIH chest X-ray classification tasks where sex and age are confounders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adeli, E., et al.: Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183, 425–437 (2018)
Adragna, R., Creager, E., Madras, D., Zemel, R.: Fairness and robustness in invariant learning: a case study in toxicity classification. arXiv preprint arXiv:2011.06485 (2020)
Ahmed, F., Bengio, Y., van Seijen, H., Courville, A.: Systematic generalisation with group invariant predictions. In: International Conference on Learning Representations (2020)
Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)
Badgeley, M.A., et al.: Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit. Med. 2(1), 1–10 (2019)
Bustos, A., et al.: xdeep-msi: explainable bias-rejecting microsatellite instability deep learning system in colorectal cancer. Biomolecules 11(12), 1786 (2021)
Creager, E., Jacobsen, J.H., Zemel, R.: Environment inference for invariant learning. In: International Conference on Machine Learning, pp. 2189–2200. PMLR (2021)
DeGrave, A.J., Janizek, J.D., Lee, S.I.: Ai for radiographic covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3(7), 610–619 (2021)
Gossner, J., Nau, R.: Geriatric chest imaging: when and how to image the elderly lung, age-related changes, and common pathologies. Radiol. Res. Pract. 2013 (2013)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)
Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)
Mihara, F., Fukuya, T., Nakata, H., Mizuno, S., Russell, W., Hosoda, Y.: Normal age-related alterations on chest radiography: a longitudinal investigation. Acta Radiol. 34(1), 53–58 (1993)
Mohamad Amin, P., Ahmad Reza, B., Mohsen, V.: How to control confounding effects by statistical analysis (2012)
Pearl, J.: Causality. Cambridge University Press (2009)
Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 560–568 (2008)
Puyol-Antón, E., et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 413–423. Springer (2021)
Rosenfeld, E., Ravikumar, P., Risteski, A.: The risks of invariant risk minimization. arXiv preprint arXiv:2010.05761 (2020)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: Chexclusion: fairness gaps in deep chest x-ray classifiers. In: BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, pp. 232–243. World Scientific (2020)
Wang, H., Wu, Z., Xing, E.P.: Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications. In: BIOCOMPUTING 2019: Proceedings of the Pacific Symposium, pp. 54–65. World Scientific (2018)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)
Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)
Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: International Conference on Machine Learning, pp. 7523–7532. PMLR (2019)
Zhao, Q., Adeli, E., Pohl, K.M.: Training confounder-free deep learning models for medical applications. Nat. Commun. 11(1), 1–9 (2020)
Acknowledgements
This research was funded by the National Science Foundation (1910973).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zare, S., Nguyen, H.V. (2022). Removal of Confounders via Invariant Risk Minimization for Medical Diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_55
Download citation
DOI: https://doi.org/10.1007/978-3-031-16452-1_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16451-4
Online ISBN: 978-3-031-16452-1
eBook Packages: Computer ScienceComputer Science (R0)