Skip to main content

Removal of Confounders via Invariant Risk Minimization for Medical Diagnosis

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

While deep networks have demonstrated state-of-the-art performance in medical image analysis, they suffer from biases caused by undesirable confounding variables (e.g., sex, age, race). Traditional statistical methods for removing confounders are often incompatible with modern deep networks. To address this challenge, we introduce a novel learning framework, named ReConfirm, based on the invariant risk minimization (IRM) theory to eliminate the biases caused by confounding variables and make deep networks more robust. Our approach allows end-to-end model training while capturing causal features responsible for pathological findings instead of spurious correlations. We evaluate our approach on NIH chest X-ray classification tasks where sex and age are confounders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adeli, E., et al.: Chained regularization for identifying brain patterns specific to HIV infection. Neuroimage 183, 425–437 (2018)

    Google Scholar 

  2. Adragna, R., Creager, E., Madras, D., Zemel, R.: Fairness and robustness in invariant learning: a case study in toxicity classification. arXiv preprint arXiv:2011.06485 (2020)

  3. Ahmed, F., Bengio, Y., van Seijen, H., Courville, A.: Systematic generalisation with group invariant predictions. In: International Conference on Learning Representations (2020)

    Google Scholar 

  4. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  5. Badgeley, M.A., et al.: Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ Digit. Med. 2(1), 1–10 (2019)

    Google Scholar 

  6. Bustos, A., et al.: xdeep-msi: explainable bias-rejecting microsatellite instability deep learning system in colorectal cancer. Biomolecules 11(12), 1786 (2021)

    Google Scholar 

  7. Creager, E., Jacobsen, J.H., Zemel, R.: Environment inference for invariant learning. In: International Conference on Machine Learning, pp. 2189–2200. PMLR (2021)

    Google Scholar 

  8. DeGrave, A.J., Janizek, J.D., Lee, S.I.: Ai for radiographic covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3(7), 610–619 (2021)

    Article  Google Scholar 

  9. Gossner, J., Nau, R.: Geriatric chest imaging: when and how to image the elderly lung, age-related changes, and common pathologies. Radiol. Res. Pract. 2013 (2013)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  11. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). In: International Conference on Machine Learning, pp. 5815–5826. PMLR (2021)

    Google Scholar 

  12. Larrazabal, A.J., Nieto, N., Peterson, V., Milone, D.H., Ferrante, E.: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proc. Natl. Acad. Sci. 117(23), 12592–12594 (2020)

    Article  Google Scholar 

  13. Mihara, F., Fukuya, T., Nakata, H., Mizuno, S., Russell, W., Hosoda, Y.: Normal age-related alterations on chest radiography: a longitudinal investigation. Acta Radiol. 34(1), 53–58 (1993)

    Article  Google Scholar 

  14. Mohamad Amin, P., Ahmad Reza, B., Mohsen, V.: How to control confounding effects by statistical analysis (2012)

    Google Scholar 

  15. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  16. Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 560–568 (2008)

    Google Scholar 

  17. Puyol-Antón, E., et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 413–423. Springer (2021)

    Google Scholar 

  18. Rosenfeld, E., Ravikumar, P., Risteski, A.: The risks of invariant risk minimization. arXiv preprint arXiv:2010.05761 (2020)

  19. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  20. Seyyed-Kalantari, L., Liu, G., McDermott, M., Chen, I.Y., Ghassemi, M.: Chexclusion: fairness gaps in deep chest x-ray classifiers. In: BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, pp. 232–243. World Scientific (2020)

    Google Scholar 

  21. Wang, H., Wu, Z., Xing, E.P.: Removing confounding factors associated weights in deep neural networks improves the prediction accuracy for healthcare applications. In: BIOCOMPUTING 2019: Proceedings of the Pacific Symposium, pp. 54–65. World Scientific (2018)

    Google Scholar 

  22. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2097–2106 (2017)

    Google Scholar 

  23. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340 (2018)

    Google Scholar 

  24. Zhao, H., Des Combes, R.T., Zhang, K., Gordon, G.: On learning invariant representations for domain adaptation. In: International Conference on Machine Learning, pp. 7523–7532. PMLR (2019)

    Google Scholar 

  25. Zhao, Q., Adeli, E., Pohl, K.M.: Training confounder-free deep learning models for medical applications. Nat. Commun. 11(1), 1–9 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation (1910973).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Zare .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2747 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zare, S., Nguyen, H.V. (2022). Removal of Confounders via Invariant Risk Minimization for Medical Diagnosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16452-1_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16451-4

  • Online ISBN: 978-3-031-16452-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics