Abstract
Rights provisioned within data protection regulations, permit patients to request that knowledge about their information be eliminated by data holders. With the advent of AI learned on data, one can imagine that such rights can extent to requests for forgetting knowledge of patient’s data within AI models. However, forgetting patients’ imaging data from AI models, is still an under-explored problem. In this paper, we study the influence of patient data on model performance and formulate two hypotheses for a patient’s data: either they are common and similar to other patients or form edge cases, i.e. unique and rare cases. We show that it is not possible to easily forget patient data. We propose a targeted forgetting approach to perform patient-wise forgetting. Extensive experiments on the benchmark Automated Cardiac Diagnosis Challenge dataset showcase the improved performance of the proposed targeted forgetting approach as opposed to a state-of-the-art method.
R. Su and X. Liu—Contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
There is also a connection between edge cases and active learning [20], where one aims to actively label diverse data to bring more information to the model.
- 2.
For our experiments we fix to introduce noise to 1\(\%\) most informative weights (based on extensive experiments) when applying the targeted forgetting.
References
Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)
Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)
Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy, pp. 463–480 (2015). https://doi.org/10.1109/SP.2015.35
Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)
Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit confidence information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1322–1333 (2015)
Ginart, A., Guan, M.Y., Valiant, G., Zou, J.: Making AI forget you: data deletion in machine learning. arXiv preprint arXiv:1907.05012 (2019)
Golatkar, A., Achille, A., Soatto, S.: Eternal sunshine of the spotless net: selective forgetting in deep networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9304–9312 (2020)
Hartley, J., Tsaftaris, S.A.: Unintended memorisation of unique features in neural networks. arXiv preprint arXiv:2205.10079 (2022)
Jegorova, M., et al.: Survey: leakage and privacy at inference time. arXiv preprint arXiv:2107.01614 (2021)
Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM (JACM) 45(6), 983–1006 (1998)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)
Krizhevsky, A., et al.: Learning multiple layers of features from tiny images (2009)
Liu, X., Tsaftaris, S.A.: Have you forgotten? A method to assess if machine learning models have forgotten data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 95–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_10
Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2537–2546 (2019)
McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Nguyen, Q.P., Low, B.K.H., Jaillet, P.: Variational Bayesian unlearning. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Sekhari, A., Acharya, J., Kamath, G., Suresh, A.T.: Remember what you want to forget: algorithms for machine unlearning. arXiv preprint arXiv:2103.03279 (2021)
Settles, B.: Active learning literature survey (2009)
Shintre, S., Roundy, K.A., Dhaliwal, J.: Making machine learning forget. In: Naldi, M., Italiano, G.F., Rannenberg, K., Medina, M., Bourka, A. (eds.) APF 2019. LNCS, vol. 11498, pp. 72–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21752-5_6
Thermos, S., Liu, X., O’Neil, A., Tsaftaris, S.A.: Controllable cardiac synthesis via disentangled anatomy arithmetic. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 160–170. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_15
Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Demystifying membership inference attacks in machine learning as a service. IEEE Trans. Serv. Comput. 14(6), 2073–2089 (2019)
Wu, M., et al.: Evaluation of inference attack models for deep learning on medical data. arXiv preprint arXiv:2011.00177 (2020)
Acknowledgements
This work was supported by the University of Edinburgh, the Royal Academy of Engineering and Canon Medical Research Europe by a PhD studentship to Xiao Liu. This work was partially supported by the Alan Turing Institute under EPSRC grant EP/N510129/1. S.A. Tsaftaris acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RC-SRF1819\(\backslash \)8\(\backslash \)25) and the [in part] support of the Industrial Centre for AI Research in digitalDiagnostics (iCAIRD, https://icaird.com) which is funded by Innovate UK on behalf of UK Research and Innovation (UKRI) [project number: 104690].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Su, R., Liu, X., Tsaftaris, S.A. (2022). Why Patient Data Cannot Be Easily Forgotten?. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438. Springer, Cham. https://doi.org/10.1007/978-3-031-16452-1_60
Download citation
DOI: https://doi.org/10.1007/978-3-031-16452-1_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16451-4
Online ISBN: 978-3-031-16452-1
eBook Packages: Computer ScienceComputer Science (R0)