Abstract
This work aims to systematize the knowledge on emerging Intelligent Information Retrieval (IIR) practices in scenarios whose context is similar to the field of tax law. It is a part of a project that covers the emerging techniques of IIR and its applicability to the tax law domain. Furthermore, it presents an overview of different approaches for representing legal data and exposes the challenging task of providing quality insights to support decision-making in a dedicated legal environment. It also offers an overview of the related background and prior research referring to the techniques for information retrieval in legal documents, establishing the current state-of-the-art, and identifying its main drawbacks. A summary of the most appropriate technologies and research approaches of the technologies that apply artificial intelligence technology to help legal tasks is also depicted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Ashley, K.D., Walker, V.R.: From information retrieval (IR) to argument retrieval (AR) for legal cases: report on a baseline study. Front. Artif. intell. Appl. 259, 29–38 (2013). https://doi.org/10.3233/978-1-61499-359-9-29
Boer, A., Hoekstra, R., Winkels, R.: MetaLex: legislation in XML (2002)
Bolisani, E., Bratianu, C.: The elusive definition of knowledge. In: Emergent Knowledge Strategies. KMOL, vol. 4, pp. 1–22. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60657-6_1
Carneiro, D.: An agent-based architecture for online dispute resolution services. Ph.D. thesis, University of Minho (2013). https://hdl.handle.net/1822/28773
Devins, C., Felin, T., Kauffman, S., Koppl, R.: The law and big data. Cornell J. Law Public Policy 27(2), 357–413 (2017)
Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.): Semantic Processing of Legal Texts. LNCS (LNAI), vol. 6036. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12837-0
Frické, M.: Big data and its epistemology. J. Am. Soc. Inf. Sci. 66(4), 651–661 (2015). https://doi.org/10.1002/asi.23212
Gangemi, A., Sagri, M.-T., Tiscornia, D.: A constructive framework for legal ontologies. In: Benjamins, V.R., Casanovas, P., Breuker, J., Gangemi, A. (eds.) Law and the Semantic Web. LNCS (LNAI), vol. 3369, pp. 97–124. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32253-5_7
Giri, R., Porwal, Y., Shukla, V., Chadha, P., Kaushal, R.: Approaches for information retrieval in legal documents. In: 2017 10th International Conference on Contemporary Computing, IC3 2017 2018-January(November 2019), pp. 1–6 (2018). https://doi.org/10.1109/IC3.2017.8284324
Gomes, M., Carneiro, D., Novais, P., Neves, J.: Modelling stress recognition in conflict resolution scenarios. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 533–544. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_48
Gomes, M., Silva, F., Ferraz, F., Silva, A., Analide, C., Novais, P.: Developing an ambient intelligent-based decision support system for production and control planning. In: Madureira, A.M., Abraham, A., Gamboa, D., Novais, P. (eds.) ISDA 2016. AISC, vol. 557, pp. 984–994. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53480-0_97
Gomes, M.F.V.: A conflict management environment to support decision-making process (2021)
Gordon, T.F., Governatori, G., Rotolo, A.: Rules and norms: requirements for rule interchange languages in the legal domain. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp. 282–296. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04985-9_26
Gostojić, S., Milosavljević, B., Konjović, Z.: Ontological model of legal norms for creating and using legislation. Comput. Sci. Inf. Syst. 10(1), 151–171 (2013). https://doi.org/10.2298/CSIS110804035G
Hayes-Roth, F.: Rule-based systems. Commun. ACM 28(9), 921–932 (1985). https://doi.org/10.1145/4284.4286
Joshi, K.P., Gupta, A., Mittal, S., Pearce, C., Joshi, A., Finin, T.: ALDA: cognitive assistant for legal document analytics. In: AAAI Fall Symposium - Technical Report FS-16-01-September, pp. 149–152 (2016)
Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, Burlington (2014)
Koniaris, M., Anagnostopoulos, I., Vassiliou, Y.: Evaluation of diversification techniques for legal information retrieval. Algorithms 10(1), 1–24 (2017). https://doi.org/10.3390/a10010022
Lame, G.: Using NLP techniques to identify legal ontology components: concepts and relations. Artif. Intell. Law 12(4), 379–396 (2004). https://doi.org/10.1007/s10506-005-4160-3
Leake, D.B.: Case-based reasoning: experiences, lessons, and future directions (1996)
Lupu, Y., Voeten, E.: Precedent in international courts: a network analysis of case citations by the European court of human rights. Br. J. Polit. Sci. 42(2), 413–439 (2012). https://doi.org/10.1017/S0007123411000433
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511809071
McCarty, L.T.: Deep semantic interpretations of legal texts. In: Proceedings of the 11th International Conference on Artificial Intelligence and Law, pp. 217–224 (2007)
Merkl, D., Schweighoffer, E., Winiwarter, W.: Exploratory analysis of concept and document spaces with connectionist networks. Artif. Intell. Law 7(2), 185–209 (1999). https://doi.org/10.1023/A:1008365524782
Nissan, E.: Digital technologies and artificial intelligence’s present and foreseeable impact on lawyering, judging, policing and law enforcement. Ai Soc. 32(3), 441–464 (2015). https://doi.org/10.1007/s00146-015-0596-5
Omotayo, F.O.: Knowledge management as an important tool in organisational management: a review of literature. Libr. Philos. Pract. 1(2015), 1–23 (2015)
Palmirani, M., Vitali, F.: Akoma-Ntoso for legal documents. In: Sartor, G., Palmirani, M., Francesconi, E., Biasiotti, M. (eds.) Legislative XML for the Semantic Web. Law, Governance and Technology Series, vol. 4. Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-1887-6_6
Ramakrishna, S., Paschke, A.: Bridging the gap between Legal Practitioners and Knowledge Engineers using semi-formal KR. CoRR abs/1406.0 (2014). https://arxiv.org/abs/1406.0079
Rissland, E.L., Daniels, J.J.: A hybrid cbr-ir approach to legal information retrieval. In: Proceedings of the 5th International Conference on Artificial Intelligence and Law, pp. 52–61 (1995). https://doi.org/10.1145/222092.2221250
Rose, D.E.: A Symbolic and Connectionist Approach to Legal Information Retrieval. Psychology Press, London (2013)
Sanderson, M., Croft, W.B.: The history of information retrieval research. In: Proceedings of the IEEE 100(Special Centennial Issue), pp. 1444–1451 (2012). https://doi.org/10.1109/JPROC.2012.2189916
Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39, p. 2. Cambridge University Press, Cambridge (2008)
Shelar, A., Moharir, M.: A comparative study to determine a suitable legal knowledge representation format. In: 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 514–519 (2018). https://doi.org/10.1109/ICEECCOT43722.2018.9001363
Slade, S.: Case-based reasoning: a research paradigm. AI Mag. 12(1), 42–42 (1991). https://doi.org/10.1609/aimag.v12i1.883
Smyth, B., Keane, M.T.: Remembering to forget. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 377–382. Citeseer (1995)
Walker, V.R., Han, J.H., Ni, X., Yoseda, K.: Semantic types for computational legal reasoning: propositional connectives and sentence roles in the veterans’ claims dataset. In: Proceedings of the International Conference on Artificial Intelligence and Law, pp. 217–226 (2017). https://doi.org/10.1145/3086512.3086535
Walker, V.R., Pillaipakkamnatt, K., Davidson, A.M., Linares, M., Pesce, D.J.: Automatic classification of rhetorical roles for sentences: comparing rule-based scripts with machine learning. In: CEUR Workshop Proceedings, vol. 2385 (2019)
Winkels, R., Boer, A., De Maat, E., Van Engers, T., Breebaart, M., Melger, H.: Constructing a semantic network for legal content. In: Artificial Intelligence Conference, Belgian/Netherlands, pp. 405–406(2005)
Xu, H., Savelka, J., Ashley, K.D.: Toward summarizing case decisions via extracting argument issues, reasons, and conclusions. In: Proceedings of the 18th International Conference on Artificial Intelligence and Law, pp. 250–254 (2021). https://doi.org/10.1145/3462757.3466098
Acknowledgement
This work was supported by the Northern Regional Operational Program, Portugal 2020 and European Union, through European Regional Development Fund (ERDF) in the scope of project number 047223 - 17/SI/2019.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gomes, M., Oliveira, B., Sousa, C. (2022). Enriching Legal Knowledge Through Intelligent Information Retrieval Techniques: A Review. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-16474-3_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16473-6
Online ISBN: 978-3-031-16474-3
eBook Packages: Computer ScienceComputer Science (R0)