Skip to main content

Automatic Configuration of Genetic Algorithm for the Optimization of Electricity Market Participation Using Sequential Model Algorithm Configuration

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

  • 1668 Accesses

Abstract

Complex optimization problems are often associated to large search spaces and consequent prohibitive execution times in finding the optimal results. This is especially relevant when dealing with dynamic real problems, such as those in the field of power and energy systems. Solving this type of problems requires new models that are able to find near-optimal solutions in acceptable times, such as metaheuristic optimization algorithms. The performance of these algorithms is, however, hugely dependent on their correct tuning, including their configuration and parametrization. This is an arduous task, usually done through exhaustive experimentation. This paper contributes to overcome this challenge by proposing the application of sequential model algorithm configuration using Bayesian optimization with Gaussian process and Monte Carlo Markov Chain for the automatic configuration of a genetic algorithm. Results from the application of this model to an electricity market participation optimization problem show that the genetic algorithm automatic configuration enables identifying the ideal tuning of the model, reaching better results when compared to a manual configuration, in similar execution times.

This work has received funding from FEDER Funds through COMPETE program and from National Funds through (FCT) under project MAS-Society (PTDC/EEI-EEE/28954/2017). This work has been supported by National Funds through FCT - Portugal and CAPES - Brazil, under project 2019.00141.CBM Desenvolvimento de Técnicas de Inteligência Artificial para a Otimização de Sistemas de Distribuição de Energia Elétrica and by the R&D Project “Continental Factory of Future, (CONTINENTAL FoF)/POCI-01-0247-FEDER-047512”, financed by the European Regional Development Fund (ERDF), through the Program “Programa Operacional Competitividade e Internacionalização (POCI)/PORTUGAL 2020”, under the management of aicep Portugal Global – Trade & Investment Agency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baghernejad, A., Aslanzadeh, E.: Application of multiobjective optimization in thermal design and analysis of complex energy systems (2022)

    Google Scholar 

  2. Kvasov, D.E., Mukhametzhanov, M.S.: Metaheuristic vs. deterministic global optimization algorithms: the univariate case. Appl. Math. Comput. 318, 245–259 (2018). https://doi.org/10.1016/j.amc.2017.05.014

    Article  MathSciNet  MATH  Google Scholar 

  3. Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Oper. Res. 54, 99–114 (2006)

    Article  Google Scholar 

  4. Birattari, M.: The problem of tuning metaheuristics: as seen from the machine learning perspective (2004)

    Google Scholar 

  5. Brum, A., Ritt, M.: Automatic design of heuristics for minimizing the makespan in permutation flow shops. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018)

    Google Scholar 

  6. Lei, L., Liu, N.: Research on optimization performance of nonlinear function based on multigroup genetic algorithm. In: 2020 IEEE 20th International Conference on Communication Technology (ICCT), pp. 1498–1502 (2020)

    Google Scholar 

  7. Pinto, T., et al.: Adaptive portfolio optimization for multiple electricity markets participation. IEEE Trans. Neural Netw. Learn. Syst. 27, 1720–1733 (2016)

    Article  MathSciNet  Google Scholar 

  8. Lindauer, M., et al.: SMAC3: a versatile bayesian optimization package for hyperparameter optimization. CoRR abs/2109.0 (2021)

    Google Scholar 

  9. Tari, S., Szczepanski, N., Mousin, L., Jacques, J., Kessaci, M.-E., Jourdan, L.: Multi-objective automatic algorithm configuration for the classification problem of imbalanced data. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020)

    Google Scholar 

  10. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The Irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  11. Sheng, W., Shao, Q., Tong, H., Peng, J.: Scheduling optimization on takeout delivery based on hybrid meta-heuristic algorithm. In: 2021 13th International Conference on Advanced Computational Intelligence (ICACI), pp. 372–377 (2021)

    Google Scholar 

  12. Sousa, T., Vale, Z., Carvalho, J.P., Pinto, T., Morais, H.: A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles. Energy 67, 81–96 (2014)

    Article  Google Scholar 

  13. Cintrano, C., Chicano, F., Alba, E.: Using metaheuristics for the location of bicycle stations. Expert Syst. Appl. 161, 113684 (2020)

    Article  Google Scholar 

  14. Blot, A., Hoos, H.H., Kessaci, M.-É., Jourdan, L.: Automatic configuration of bi-objective optimisation algorithms: impact of correlation between objectives. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 571–578 (2018)

    Google Scholar 

  15. Stützle, T., López-Ibáñez, M.: Automated design of metaheuristic algorithms. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 541–579. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_17

    Chapter  Google Scholar 

  16. Faia, R., Pinto, T., Vale, Z.: Dynamic fuzzy estimation of contracts historic information using an automatic clustering methodology. In: Bajo, J., et al. (eds.) PAAMS 2015. CCIS, vol. 524, pp. 270–282. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19033-4_23

    Chapter  Google Scholar 

  17. Faia, R., Pinto, T., Vale, Z.: GA optimization technique for portfolio optimization of electricity market participation. In: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016, Athens, Greece (2017)

    Google Scholar 

  18. Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., Cox, D.D.: Hyperopt: a Python library for model selection and hyperparameter optimization. Comput. Sci. Discov. 8, 14008 (2015)

    Article  Google Scholar 

  19. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13, 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  20. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 2, pp. 2951–2959. Curran Associates Inc. (2012)

    Google Scholar 

  21. Hutter, F., Hoos, H.H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential parameter optimization. In: Blum, C., Battiti, R. (eds.) LION 2010. LNCS, vol. 6073, pp. 281–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13800-3_30

    Chapter  Google Scholar 

  22. Nomura, M., Abe, K.: A simple heuristic for Bayesian optimization with a low budget. arXiv abs/1911.0 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiago Pinto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, V. et al. (2022). Automatic Configuration of Genetic Algorithm for the Optimization of Electricity Market Participation Using Sequential Model Algorithm Configuration. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics