Skip to main content

Backpropagation Through States: Training Neural Networks with Sequentially Semiseparable Weight Matrices

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

Abstract

Matrix-Vector multiplications usually represent the dominant part of computational operations needed to propagate information through a neural network. This number of operations can be reduced if the weight matrices are structured. In this paper, we introduce a training algorithm for neural networks with sequentially semiseparable weight matrices based on the backpropagation algorithm. By exploiting the structures in the weight matrices, the computational complexity for computing the matrix-vector product can be reduced to the subquadratic domain. We show that this can lead to computing time reductions on a microcontroller. Furthermore, we analyze the generalization capabilities of neural networks with sequentially semiseparable matrices. Our experiments show that neural networks with structured weight matrices can outperform standard feed-forward neural networks in terms of test prediction accuracy for several real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org/.

  2. 2.

    https://github.com/MatthiasKi/statespace_learning.

  3. 3.

    https://archive.ics.uci.edu/.

References

  1. Alimoglu, F., Alpaydin, E.: Methods of combining multiple classifiers based on different representations for pen-based handwritten digit recognition. In: Proceedings of the Fifth Turkish Artificial Intelligence and Artificial Neural Networks Symposium (TAINN 1996). Citeseer (1996)

    Google Scholar 

  2. Chandrasekaran, S., Gu, M., Pals, T.: A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28(3), 603–622 (2006)

    Article  MathSciNet  Google Scholar 

  3. Denil, M., Shakibi, B., Dinh, L., De Freitas, N., et al.: Predicting parameters in deep learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156 (2013)

    Google Scholar 

  4. Dewilde, P., Van der Veen, A.J.: Time-Varying Systems and Computations. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-2817-0

    Book  MATH  Google Scholar 

  5. Fan, Y., Lin, L., Ying, L., Zepeda-Núnez, L.: A multiscale neural network based on hierarchical matrices. Multisc. Model. Simul. 17(4), 1189–1213 (2019)

    Article  MathSciNet  Google Scholar 

  6. Gantmakher, F., Krein, M.: Sur les matrices completement non négatives et oscillatoires. Compos. Math. 4, 445–476 (1937)

    MATH  Google Scholar 

  7. Gardner, A., Kanno, J., Duncan, C.A., Selmic, R.: Measuring distance between unordered sets of different sizes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 137–143 (2014)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Ioannou, Y., Robertson, D., Shotton, J., Cipolla, R., Criminisi, A.: Training CNNs with low-rank filters for efficient image classification. arXiv preprint arXiv:1511.06744 (2015)

  10. Kung, S., Lin, D.: Optimal Hankel-norm model reductions: multivariable systems. IEEE Trans. Autom. Control 26(4), 832–852 (1981)

    Article  MathSciNet  Google Scholar 

  11. Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., Lempitsky, V.: Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint arXiv:1412.6553 (2014)

  12. Sindhwani, V., Sainath, T., Kumar, S.: Structured transforms for small-footprint deep learning. In: Advances in Neural Information Processing Systems, pp. 3088–3096 (2015)

    Google Scholar 

  13. Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convolutional neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067 (2015)

  14. Thomas, A.T., Gu, A., Dao, T., Rudra, A., Ré, C.: Learning compressed transforms with low displacement rank. Adv. Neural. Inf. Process. Syst. 2018, 9052 (2018)

    Google Scholar 

  15. Titti, A., Squartini, S., Piazza, F.: A new time-variant neural based approach for nonstationary and non-linear system identification. In: 2005 IEEE International Symposium on Circuits and Systems, pp. 5134–5137. IEEE (2005)

    Google Scholar 

  16. Van Lint, J., Hoogendoorn, S., van Zuylen, H.J.: Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Rese. Part C: Emerg. Technol. 13(5–6), 347–369 (2005)

    Article  Google Scholar 

  17. Vandebril, R., Van Barel, M., Golub, G., Mastronardi, N.: A bibliography on semiseparable matrices. Calcolo 42(3), 249–270 (2005)

    Article  MathSciNet  Google Scholar 

  18. Vandebril, R., Van Barel, M., Mastronardi, N.: Matrix Computations and Semiseparable Matrices: Linear Systems, vol. 1. JHU Press (2007)

    Google Scholar 

  19. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems, pp. 2074–2082 (2016)

    Google Scholar 

  20. Xie, D., Xiong, J., Pu, S.: All you need is beyond a good init: exploring better solution for training extremely deep convolutional neural networks with orthonormality and modulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6176–6185 (2017)

    Google Scholar 

  21. Zamarreño, J.M., Vega, P.: State space neural network. properties and application. Neural Netw. 11(6), 1099–1112 (1998)

    Google Scholar 

  22. Zhao, L., Liao, S., Wang, Y., Li, Z., Tang, J., Yuan, B.: Theoretical properties for neural networks with weight matrices of low displacement rank. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 4082–4090. JMLR. org (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Kissel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kissel, M., Gottwald, M., Gjeroska, B., Paukner, P., Diepold, K. (2022). Backpropagation Through States: Training Neural Networks with Sequentially Semiseparable Weight Matrices. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics