Skip to main content

A Robust State Transition Function for Multi-agent Epistemic Systems

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13566))

Included in the following conference series:

  • 1259 Accesses

Abstract

This paper studies belief correction and state transition for ontic actions in a multi-agent epistemic framework. When a full observer agent observes the execution of an action, he will correct his (possibly wrong) initial belief about the precondition of the action as well as his belief about his own observability. The paper shows that correcting beliefs about precondition and observability is vital for observing the effect of the action and robust state transition, highlighting the risk of yielding counter-intuitive results. The paper proposes a state transition function for ontic actions which integrates correcting beliefs for precondition, observability and realizing the effect of the action. This novel transition function does not require event update models. The paper investigates several properties of the transition function, assessing its robustness in ensuring that beliefs of agents change consistently with their degree of observability of action occurrences. Sample scenarios are provided to illustrate the novel transition function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details of state transition in these examples can be found in our online appendix at https://github.com/yizmirlioglu/EPIA2022.

  2. 2.

    The proposed approach can be easily extended to cover sensing and announcement actions. We omit it due to space limitation.

  3. 3.

    https://github.com/yizmirlioglu/EPIA2022.

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: partial meet contraction and revision functions. JSL 50(2), 510–530 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Aucher, G.: Generalizing AGM to a multi-agent setting. Logic J. IGPL 18(4), 530–558 (2010)

    Article  MathSciNet  Google Scholar 

  3. Baltag, A., Moss, L.: Logics for epistemic programs. Synthese 134(2), 165–224 (2004). https://doi.org/10.1023/B:SYNT.0000024912.56773.5e

    Article  MathSciNet  MATH  Google Scholar 

  4. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common knowledge, and private suspicions. In: Arló-Costa, H., Hendricks, V.F., van Benthem, J. (eds.) Readings in Formal Epistemology. SGTP, vol. 1, pp. 773–812. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-20451-2_38

    Chapter  Google Scholar 

  5. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In: Proceedings of 7th LOFT. Texts in Logic and Games 3, pp. 13–60. Amsterdam University Press (2008)

    Google Scholar 

  6. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent domains: foundations. arXiv.org p. https://arxiv.org/abs/1511.01960v3 (2020)

  7. Baral, C., Gelfond, G., Pontelli, E., Son, T.C.: An action language for multi-agent domains. Artif. Intell. 302, 103601 (2022). https://doi.org/10.1016/j.artint.2021.103601

    Article  MathSciNet  MATH  Google Scholar 

  8. van Benthem, J., Smets, S.: Dynamic logics of belief change. In: Handbook of Epistemic Logic, pp. 313–394 (2015)

    Google Scholar 

  9. van Benthem, J., van Eijck, J., Kooi, B.P.: Logics of communication and change. Inf. Comput. 204(11), 1620–1662 (2006)

    Article  MathSciNet  Google Scholar 

  10. Borgida, A.: Language features for flexible handling of exceptions in information systems. ACM Trans. Database Syst. 10(4), 563–603 (1985)

    Article  Google Scholar 

  11. Buckingham, D., Kasenberg, D., Scheutz, M.: Simultaneous representation of knowledge and belief for epistemic planning with belief revision, pp. 172–181 (2020). https://doi.org/10.24963/kr.2020/18

  12. Dalal, M.: Investigations into a theory of knowledge base revision: preliminary report. In: Proceedings of the Seventh National Conference on Artificial Intelligence, vol. 2, pp. 475–479. Citeseer (1988)

    Google Scholar 

  13. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1–2), 1–29 (1997)

    Article  MathSciNet  Google Scholar 

  14. van Ditmarsch, H.: Prolegomena to dynamic logic for belief revision. Synthese (Knowl. Rationality Action) 147, 229–275 (2005)

    MathSciNet  MATH  Google Scholar 

  15. van Ditmarsch, H.P., van der Hoek, W., Kooi, B.P.: Dynamic epistemic logic with assignment. In: Dignum, F., Dignum, V., Koenig, S., Kraus, S., Singh, M.P., Wooldridge, M. (eds.) 4th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), 25–29 July 2005, Utrecht, The Netherlands, pp. 141–148. ACM (2005)

    Google Scholar 

  16. Ditmarsch, H.V., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer Publishing Company, Incorporated, 1st edn. (2007)

    Google Scholar 

  17. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT press, Cambridge (1995)

    MATH  Google Scholar 

  18. Fagin, R., Ullman, J.D., Vardi, M.Y.: On the semantics of updates in databases. In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pp. 352–365 (1983)

    Google Scholar 

  19. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 3(6) (1998)

    Google Scholar 

  20. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising it. In: Proceedings of KR 92, pp. 387–394 (1992)

    Google Scholar 

  21. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artif. Intell. 52(3), 263–294 (1992)

    Article  MathSciNet  Google Scholar 

  22. Miller, T., Muise, C.J.: Belief update for proper epistemic knowledge bases. In: IJCAI, pp. 1209–1215 (2016)

    Google Scholar 

  23. Rajaratnam, D., Thielscher, M.: Representing and reasoning with event models for epistemic planning. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, vol. 18, pp. 519–528 (2021)

    Google Scholar 

  24. Satoh, K.: Nonmonotonic reasoning by minimal belief revision. In: Proceedin FGCS, pp. 455–462. Springer, Heidelberg (1988)

    Google Scholar 

  25. Van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  26. Winslett, M.: Reasoning about action using a possible models approach. In: AAAI, pp. 89–93 (1988)

    Google Scholar 

Download references

Acknowledgments

The authors have been partially supported by NSF grants 2151254, 1914635 and 1757207. Tran Cao Son was also partially supported by NSF grant 1812628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Izmirlioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Izmirlioglu, Y., Pham, L., Son, T.C., Pontelli, E. (2022). A Robust State Transition Function for Multi-agent Epistemic Systems. In: Marreiros, G., Martins, B., Paiva, A., Ribeiro, B., Sardinha, A. (eds) Progress in Artificial Intelligence. EPIA 2022. Lecture Notes in Computer Science(), vol 13566. Springer, Cham. https://doi.org/10.1007/978-3-031-16474-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16474-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16473-6

  • Online ISBN: 978-3-031-16474-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics